搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变SiNMOSFET源漏电流特性模型

吕懿 张鹤鸣 胡辉勇 杨晋勇 殷树娟 周春宇

引用本文:
Citation:

单轴应变SiNMOSFET源漏电流特性模型

吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇

A Model of channel current for uniaxially strained Si NMOSFET

Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong, Yin Shu-Juan, Zhou Chun-Yu
PDF
导出引用
  • 本文在建立单轴应变Si NMOSFET迁移率模型和阈值电压模型的基础上, 基于器件不同的工作区域, 从基本的漂移扩散方程出发, 分别建立了单轴应变Si NMOSFET源漏电流模型. 其中将应力的影响显式地体现在迁移率和阈值电压模型中, 使得所建立的模型能直观地反映出源漏电流特性与应力强度的关系. 并且对于亚阈区电流模型, 基于亚阈区反型电荷, 而不是采用常用的有效沟道厚度近似的概念, 从而提高了模型的精度. 同时将所建模型的仿真结果与实验结果进行了比较, 验证了模型的可行性. 该模型已经被嵌入进电路仿真器中, 实现了对单轴应变Si MOSFET 器件和电路的模拟仿真.
    The channel current model is used to analyse the behavior of uniaxially strained Si NMOSFET device and circuit. With the development of mobility and threshold voltage model, starting from the basic drift-diffusion equation, the channel current model for an uniaxially strained Si NMOSFET device is developed under different bias conditions. Especially, the stress intensity is explicitly included in the mobility and threshold voltage model, and this makes the model convenient to directly reflect the relationship between the device channel current and the stress intensity. Moreover, in terms of the subthreshold current model, the charge of weak inversion rather than the normal effective channel thickness approximation is involved. In this way, the model accuracy can be improved. Furthermore, this model is implemented by using verilogA language and is applied to the strained Si circuit's SPICE simulation, the model parameters extraction tool ParamPlus++ is developed at the same time. As a result, the simulation of uniaxial-strained Si NMOSFET device and circuit can be achieved; the simulation data fits the experimental results or TCAD simulation results very well, and this proves the accuracy of the model. Meanwhile the simulation results of the threshold voltage and subthreshold current with respect to stress intensity are obtained and analyzed. The results show that with increasing stress intensity the subthreshold current is increased while the threshold voltage is decreased.
      通信作者: 胡辉勇, 35691513@qq.com
    • 基金项目: 教育部博士点基金(批准号: JY0300122503)和中央高校基本业务费(批准号: K5051225014, K5051225004)资助的课题.
      Corresponding author: Hu Hui-Yong, 35691513@qq.com
    • Funds: Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. JY0300122503), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225014, K5051225004).
    [1]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [2]

    Lv Y, Zhang H M, Hu H Y, Yang J Y 2014 Acta Phys. Sin. 63 197103(in Chinese) [吕懿, 张鹤鸣, 胡辉勇, 杨晋勇 2014 物理学报 63 197103]

    [3]

    Nicoleta W, Harald R, Mahadi-ul H 2011 Solid-State Electronics 57 60

    [4]

    Toshifumi I, Toshinori N, Tsutomu T 2008 IEEE Transactions on Electron Devices 55 649

    [5]

    David C, Gilmer, Jamie K 2010 IEEE Transactions on Electron Devices 57 898

    [6]

    Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205(in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 物理学报 60 077205]

    [7]

    Valinajad H, Hosseini R, Akbari M E 2012 IJRRAS 13 2

    [8]

    Hung M F, Wu Y C, Tang Z Y 2011 Applied Physics Letters 98 162108

    [9]

    Lim J S, Thompson S E, Fossum J G 2004 IEEE Electron Device Letters 250 731

    [10]

    Roldn J B, Gmiz F, P Cartujo C P 2003 IEEE Tran Electron Devices 50 1408

    [11]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Zhou C Y, Wang G Y, Li Y C 2013 Chin. Phys. B 22 028503

    [12]

    Kang T K 2012 IEEE Electron Devices Letters 33 770

    [13]

    Kumar M, Dubey S, Tiwari P K, Jit S 2013 Superlattices and Microstructures 58 10

    [14]

    Chen D Y, Tang T G, Araujo C 1989 Chinese Journal of Semiconductors 10 547 (in Chinese) [陈登元, 汤庭鳌, C. A. Paz de Araujo 1989 半导体学报 10 547]

  • [1]

    Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301

    [2]

    Lv Y, Zhang H M, Hu H Y, Yang J Y 2014 Acta Phys. Sin. 63 197103(in Chinese) [吕懿, 张鹤鸣, 胡辉勇, 杨晋勇 2014 物理学报 63 197103]

    [3]

    Nicoleta W, Harald R, Mahadi-ul H 2011 Solid-State Electronics 57 60

    [4]

    Toshifumi I, Toshinori N, Tsutomu T 2008 IEEE Transactions on Electron Devices 55 649

    [5]

    David C, Gilmer, Jamie K 2010 IEEE Transactions on Electron Devices 57 898

    [6]

    Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205(in Chinese) [王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 物理学报 60 077205]

    [7]

    Valinajad H, Hosseini R, Akbari M E 2012 IJRRAS 13 2

    [8]

    Hung M F, Wu Y C, Tang Z Y 2011 Applied Physics Letters 98 162108

    [9]

    Lim J S, Thompson S E, Fossum J G 2004 IEEE Electron Device Letters 250 731

    [10]

    Roldn J B, Gmiz F, P Cartujo C P 2003 IEEE Tran Electron Devices 50 1408

    [11]

    Wang B, Zhang H M, Hu H Y, Zhang Y M, Zhou C Y, Wang G Y, Li Y C 2013 Chin. Phys. B 22 028503

    [12]

    Kang T K 2012 IEEE Electron Devices Letters 33 770

    [13]

    Kumar M, Dubey S, Tiwari P K, Jit S 2013 Superlattices and Microstructures 58 10

    [14]

    Chen D Y, Tang T G, Araujo C 1989 Chinese Journal of Semiconductors 10 547 (in Chinese) [陈登元, 汤庭鳌, C. A. Paz de Araujo 1989 半导体学报 10 547]

  • [1] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [2] 郝敏如, 胡辉勇, 廖晨光, 王斌, 赵小红, 康海燕, 苏汉, 张鹤鸣. 射线总剂量辐照对单轴应变Si纳米n型金属氧化物半导体场效应晶体管栅隧穿电流的影响. 物理学报, 2017, 66(7): 076101. doi: 10.7498/aps.66.076101
    [3] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [4] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [5] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究. 物理学报, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [6] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [7] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [9] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型. 物理学报, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [10] 李立, 刘红侠, 杨兆年. 量子阱Si/SiGe/Sip型场效应管阈值电压和沟道空穴面密度模型. 物理学报, 2012, 61(16): 166101. doi: 10.7498/aps.61.166101
    [11] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型. 物理学报, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [12] 屈江涛, 张鹤鸣, 秦珊珊, 徐小波, 王晓艳, 胡辉勇. 小尺寸应变Si nMOSFET物理模型的研究. 物理学报, 2011, 60(9): 098501. doi: 10.7498/aps.60.098501
    [13] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型. 物理学报, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [14] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [15] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [16] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型. 物理学报, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [17] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究. 物理学报, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [18] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [19] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [20] 郑中山, 刘忠立, 张国强, 李 宁, 范 楷, 张恩霞, 易万兵, 陈 猛, 王 曦. 埋氧层注氮工艺对部分耗尽SOI nMOSFET特性的影响. 物理学报, 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
计量
  • 文章访问数:  4926
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-10-05

/

返回文章
返回