搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带碰撞双稳态压电俘能系统的俘能特性研究

蓝春波 秦卫阳

引用本文:
Citation:

带碰撞双稳态压电俘能系统的俘能特性研究

蓝春波, 秦卫阳

Vibration energy harvesting from a piezoelectric bistable system with two symmetric stops

Lan Chun-Bo, Qin Wei-Yang
PDF
导出引用
  • 双稳态俘能系统的运动常常会陷入单个势能阱中, 导致俘能效率降低. 为了解决这个问题, 本文提出了一类带碰撞的磁斥力双稳态压电振动能量采集系统. 建立了该碰撞双稳态系统的机电耦合方程, 分析了碰撞对双稳态系统动力学特性的影响. 研究了确定性激励和低强度随机激励下碰撞对系统响应特性和俘能效率的影响. 结果表明: 简谐激励下, 碰撞能够使得原双稳态系统的单阱小幅周期运动转变为双阱间的大幅运动, 从而有效地提高输出功率. 得到了低强度随机激励下, 不同碰撞间隙对系统动力响应特性和输出功率的影响规律. 对一个给定的随机激励, 存在一个最优的碰撞间隙, 此时碰撞能够将原双稳态系统单阱内的随机运动转化为频繁的双阱跳跃, 出现大幅值运动, 从而大幅提高了系统的俘能效率.
    Random vibration energy is widely existing in the environment. To efficiently harvest it, many researchers have designed lots of harvesters up till now. A lot of research works have found that when a harvester with bistable piezoelectric energy is excited by stochastic forces, if the intensity of them is low, the system's motion will be trapped in a single potential well. This will result in a low output voltage. In order to overcome the difficult of it and improve the harvesting efficiency, we develop an impact facility with two stops and incorporate it to a bi-stable energy harvester. This design can improve the harvesting efficiency greatly. First the electromechanical coupling equations are derived based on the Euler-Bernoulli beam theory and Kirchhoff's law. Then, we analyze the symmetric stops' effect on the potential function and the elastic restoring force of the system. Results show that both the potential energy and the magnitude of restoring force will be enhanced when collision takes place. Furthermore, we investigate the impact's effect on the system's dynamic responses and efficiency at harmonic excitation. Results reveal that a well designed impact can transform an intrawell motion into an interwell, and then increase the output voltage. And the chaotic motion can be changed into the large amplitude periodic one. Then, the harvester's dynamic responses under random excitations at a low intensity are obtained by using Euler-Maruyama method. Results indicate that the collision gaps can greatly influence the efficiency of the energy harvester. Collisions between the beam and the stops can force the system to oscillate between two potential wells more frequently. According to the relationship between the gap and the standard deviation of output voltage, we know that there exists an optimal collision gap for a definite intensity of stochastic excitation. The bistable energy harvester with this optimal gap will oscillate between the two wells frequently, and output a large voltage. Moreover, the collision stiffness can influence the system's performance as well. With the increase of collision stiffness, the system will exhibit a more frequently jumping between the two potential wells, but the stiffness has a limitation, exceeding which it cannot increase the frequency of jumping and improve the output power any more. So by properly designing the collision gap and stiffness, the system can most frequently jump between the two wells with a large amplitude of displacement, hence can attain the highest harvesting efficiency.
      通信作者: 秦卫阳, qinweiyang@yahoo.com.cn
    • 基金项目: 国家自然科学基金(批准号: 11172234)资助的课题.
      Corresponding author: Qin Wei-Yang, qinweiyang@yahoo.com.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172234).
    [1]

    Zuo L, Tang X D 2013 J. Intel Mat Syst Str. 24 1405

    [2]

    Li H D, Tian C, Daniel Deng Z, 2014 Appl. Phys. Rev. 1 041301

    [3]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [4]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [7]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [8]

    Lan C B, Qin W Y, Li H T 2015 Acta Phys. Sin. 64 080503 (in Chinese) [蓝春波, 秦卫阳, 李海涛 2015 物理学报 64 080503]

    [9]

    Zhao S, Erturk A 2013 Appl. Phys. Lett. 106 103902

    [10]

    Lan C B, Qin W Y 2014 Appl. Phys. Lett. 105 113901

    [11]

    Zhou S X, Cao J Y, Inman D J, Liu S S, Wang W, Lin J 2015 Appl. Phys. Lett. 105 093901

    [12]

    Liu W Q, Formosa F, Badel A, Wu Y P, Agbossou A 2014 Sens. Actuators. A 216 106

    [13]

    Moss S, Barry A, Powlesland I, Galea S, Carman G P 2010 Appl. Phys. Lett. 97 234101

    [14]

    Liu H C, Lee C K, Kobayashi T, Tay C J, Quan C G 2012 Smart Mater. Struct. 21 035005

    [15]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [16]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

  • [1]

    Zuo L, Tang X D 2013 J. Intel Mat Syst Str. 24 1405

    [2]

    Li H D, Tian C, Daniel Deng Z, 2014 Appl. Phys. Rev. 1 041301

    [3]

    Harne R L, Wang K W 2013 Smart Mater. Struct. 22 023001

    [4]

    Erturk A, Hoffmann J, Inman D J 2009 Appl. Phys. Lett. 94 254102

    [5]

    Cottone F, Vocca H, Gammaitoni L 2009 Phys. Rev. Lett. 102 080601

    [6]

    Litak G, Friswell M I, Adhikari S 2010 Appl. Phys. Lett. 96 214103

    [7]

    Ali S F, Adhikari S, Friswell M I, Narayanan S 2011 J. Appl. Phys. 109 074904

    [8]

    Lan C B, Qin W Y, Li H T 2015 Acta Phys. Sin. 64 080503 (in Chinese) [蓝春波, 秦卫阳, 李海涛 2015 物理学报 64 080503]

    [9]

    Zhao S, Erturk A 2013 Appl. Phys. Lett. 106 103902

    [10]

    Lan C B, Qin W Y 2014 Appl. Phys. Lett. 105 113901

    [11]

    Zhou S X, Cao J Y, Inman D J, Liu S S, Wang W, Lin J 2015 Appl. Phys. Lett. 105 093901

    [12]

    Liu W Q, Formosa F, Badel A, Wu Y P, Agbossou A 2014 Sens. Actuators. A 216 106

    [13]

    Moss S, Barry A, Powlesland I, Galea S, Carman G P 2010 Appl. Phys. Lett. 97 234101

    [14]

    Liu H C, Lee C K, Kobayashi T, Tay C J, Quan C G 2012 Smart Mater. Struct. 21 035005

    [15]

    Fan K Q, Xu C H, Wang W D, Fang Y 2014 Chin. Phys. B 23 084501

    [16]

    Chen Z S, Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese) [陈仲生, 杨拥民 2011 物理学报 60 074301]

  • [1] 杨建志, 何永清, 焦凤, 王进. 液体弹珠碰撞固着液滴的影响因素及动力学分析. 物理学报, 2023, 72(16): 164702. doi: 10.7498/aps.72.20230815
    [2] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-法在接触约束多体系统动力学中的应用. 物理学报, 2017, 66(16): 164501. doi: 10.7498/aps.66.164501
    [4] 刘惠平, 邹秀, 邹滨雁, 邱明辉. 碰撞参数对磁化电负性等离子体鞘层结构的影响. 物理学报, 2016, 65(24): 245201. doi: 10.7498/aps.65.245201
    [5] 马星晨, 叶瑞丰, 张添乐, 张晓青. 基于单极性驻极体薄膜的振动能俘获研究. 物理学报, 2016, 65(17): 177701. doi: 10.7498/aps.65.177701
    [6] 蓝春波, 秦卫阳, 李海涛. 随机激励下双稳态压电俘能系统的相干共振及实验验证. 物理学报, 2015, 64(8): 080503. doi: 10.7498/aps.64.080503
    [7] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [8] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [9] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [10] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究. 物理学报, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [11] 蒋涛, 陆林广, 陆伟刚. 等直径微液滴碰撞过程的改进光滑粒子动力学模拟. 物理学报, 2013, 62(22): 224701. doi: 10.7498/aps.62.224701
    [12] 徐梅, 王晓璐, 令狐荣锋, 杨向东. Ne原子与HF分子碰撞振转激发分波截面的研究. 物理学报, 2013, 62(6): 063102. doi: 10.7498/aps.62.063102
    [13] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [14] 张凤奎, 丁永杰. Hall推力器内饱和鞘层下电子与壁面碰撞频率特性. 物理学报, 2011, 60(6): 065203. doi: 10.7498/aps.60.065203
    [15] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [16] 王继志, 王美琴, 王英龙. 一种基于混沌的带密钥Hash函数的碰撞问题及分析. 物理学报, 2008, 57(5): 2737-2742. doi: 10.7498/aps.57.2737
    [17] 王继志, 王英龙, 王美琴. 一类基于混沌映射构造Hash函数方法的碰撞缺陷. 物理学报, 2006, 55(10): 5048-5054. doi: 10.7498/aps.55.5048
    [18] 段芳莉, 雒建斌, 温诗铸. 纳米粒子与单晶硅表面碰撞的反弹机理研究. 物理学报, 2005, 54(6): 2832-2837. doi: 10.7498/aps.54.2832
    [19] 王利光, 王 军. O5+离子与H原子碰撞时电子俘获概率的计算. 物理学报, 2003, 52(2): 312-315. doi: 10.7498/aps.52.312
    [20] 李延龄, 罗成林. Si60团簇的结构及其与Si(111)面间碰撞的分子动力学模拟. 物理学报, 2002, 51(11): 2589-2594. doi: 10.7498/aps.51.2589
计量
  • 文章访问数:  5350
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-06
  • 修回日期:  2015-06-10
  • 刊出日期:  2015-11-05

/

返回文章
返回