搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯的太赫兹器件研究进展

冯伟 张戎 曹俊诚

引用本文:
Citation:

基于石墨烯的太赫兹器件研究进展

冯伟, 张戎, 曹俊诚

Progress of terahertz devices based on graphene

Feng Wei, Zhang Rong, Cao Jun-Cheng
PDF
导出引用
  • 石墨烯是一种零带隙二维的半导体材料, 具有极高的载流子迁移率, 优异的机械、电学、热学和光学等性能. 在太赫兹辐射源、调制器和探测器件的研究中, 石墨烯材料具有独特的优势. 本文以石墨烯材料在太赫兹辐射源、调制器以及探测器等器件方面的应用为主, 综述了石墨烯太赫兹器件的最新研究进展.
    Graphene has unique electronic properties stemming from a linear gapless carrier energy spectrum, and has dominant advantages in the research of devices such as lasers, detectors and modulators in terahertz region due to its tunable energy gap and extremely high carrier mobility. In this review, we summarize its latest progress in applications of terahertz devices such as lasers, detectors and modulators. Terahertz lasers based on graphene can reach a gain as high as 104 cm-1, and terahertz detectors with different structures such as a bilayer graphene field-effect transistor with top gate and buried gate can achieve NEP (noise equivalent power) ~ m nW/Hz. Graphene terahertz modulators, which are equipped with transmission configuration and reflection configuration, can have a very high modulation depth. These results may be helpful for developing the high-efficiency graphene terahertz devices.
      通信作者: 曹俊诚, jccao@mail.sim.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339803)、国家自然科学基金(批准号: 61131006, 61321492, 61306066)、 国家重大科学仪器设备开发专项(批准号: 2011YQ150021)、 国家科技重大专项(批准号: 2011ZX02707)、中国科学院重要方向项目(批准号:YYYJ-1123-1)、中国科学院创新团队国际合作伙伴计划: 高迁移率材料工程创新团队项目和上海市科学技术委员会(批准号:14530711300, 13ZR1464600)资助的课题.
      Corresponding author: Cao Jun-Cheng, jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, 61306066), the National Key Scientific Instrument and Equipment Development Project, China (Grant No. 2011YQ150021), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707), the Major Project of the Chinese Academy of Sciences (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300,13ZR1464600).
    [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Cao J C 2003 J. Funct. Mater. Dev. 9 111 (in Chinese) [曹俊诚 2003 功能材料与器件学报 9 111]

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [7]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (1st Ed.) (Beijing: Science Press) p1 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(第一版)(北京: 科学出版社) 第1页]

    [8]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D 2009 Adv. Funct. Mater. 19 3077

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [10]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [11]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [12]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [13]

    Karasawa H, Komori T, Watanabe T, Satou A, Fukidome H, Suemitsu M, Ryzhii V, Otsuji T 2011 J. Infrared Millim. Terahertz Waves 32 655

    [14]

    Ryzhi V, Ryzhi M, Otsuji T 2011 Appl. Phys. Lett. 99 173504

    [15]

    Ryzhi V, Ryzhi M, Mitin V, Satou A, Otsuji T 2011 Jpn. J. Appl. Phys. 50 094001

    [16]

    Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T 2012 Phys. Rev. B 85 035443

    [17]

    Watanabe T, Fukushima T, Yabe Y, Boubanga Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [18]

    Ryzhii V, Dubinov A A, Aleshkin V Ya, Ryzhi M, Otsuji T 2013 Appl. Phys. Lett. 103 163507

    [19]

    Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Ostuji T, Shur M S 2012 Phys. Rev. B 86 195437

    [20]

    Ryzhii V, Mitin V, Ryzhii M, Ryabova N, Otsuji T 2008 Appl. Phys. Express 1 063002

    [21]

    Ryzhii V, Ryzhii M, Ryabova N, Mitin V, Otsuji T 2009 Jpn. J. Appl. Phys. 48 04C144

    [22]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [23]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [24]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [25]

    Chen J, Badioli M, Alonso-Gonzlez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F J, Hillenbrand R, Koppens F H 2012 Nature 487 77

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nature Mater. 11 865

    [28]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [29]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [30]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [31]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [32]

    Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D, Chen Y 2008 Appl. Phys. Lett. 93 131905

    [33]

    Choi H, Borondics F, Siegel D A, Zhou S Y, Martin M C, Lanzara A, Kaindl R A 2009 Appl. Phys. Lett. 94 172102

    [34]

    Liu M, Yin X, UlinAvila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [35]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [36]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [37]

    Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing H G 2012 Appl. Phys. Lett. 101 261115

    [38]

    Weis P, Garcia-Pomar J L, Hh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [39]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Sci. Rep. 4 7409

  • [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Cao J C 2003 J. Funct. Mater. Dev. 9 111 (in Chinese) [曹俊诚 2003 功能材料与器件学报 9 111]

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [5]

    Li S J, Gan S, Mu H R, Xu Q Y, Qiao H, Li P F, Xue Y Z, Bao Q L 2014 New Carbon Mater. 29 329 (in Chinese) [李绍娟, 甘胜, 沐浩然, 徐庆阳, 乔虹, 李鹏飞, 薛运周, 鲍桥梁 2014 新型炭材料 29 329]

    [6]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [7]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (1st Ed.) (Beijing: Science Press) p1 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(第一版)(北京: 科学出版社) 第1页]

    [8]

    Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P, Tang D 2009 Adv. Funct. Mater. 19 3077

    [9]

    Ryzhii V, Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [10]

    Satou A, Vasko F T, Ryzhii V 2008 Phys. Rev. B 78 115431

    [11]

    Ryzhii V, Ryzhii M, Satou A 2009 J. Appl. Phys. 106 084507

    [12]

    Ryzhii V, Ryzhii M, Otsuji T 2008 Phys. Stat. Sol. 5 261

    [13]

    Karasawa H, Komori T, Watanabe T, Satou A, Fukidome H, Suemitsu M, Ryzhii V, Otsuji T 2011 J. Infrared Millim. Terahertz Waves 32 655

    [14]

    Ryzhi V, Ryzhi M, Otsuji T 2011 Appl. Phys. Lett. 99 173504

    [15]

    Ryzhi V, Ryzhi M, Mitin V, Satou A, Otsuji T 2011 Jpn. J. Appl. Phys. 50 094001

    [16]

    Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V, Otsuji T 2012 Phys. Rev. B 85 035443

    [17]

    Watanabe T, Fukushima T, Yabe Y, Boubanga Tombet S A, Satou A, Dubinov A A, Aleshkin V Ya, Mitin V, Ryzhii V, Otsuji T 2013 New J. Phys. 15 075003

    [18]

    Ryzhii V, Dubinov A A, Aleshkin V Ya, Ryzhi M, Otsuji T 2013 Appl. Phys. Lett. 103 163507

    [19]

    Popov V V, Polischuk O V, Davoyan A R, Ryzhii V, Ostuji T, Shur M S 2012 Phys. Rev. B 86 195437

    [20]

    Ryzhii V, Mitin V, Ryzhii M, Ryabova N, Otsuji T 2008 Appl. Phys. Express 1 063002

    [21]

    Ryzhii V, Ryzhii M, Ryabova N, Mitin V, Otsuji T 2009 Jpn. J. Appl. Phys. 48 04C144

    [22]

    Wright A R, Cao J C, Zhang C 2009 Phys. Rev. Lett. 103 207401

    [23]

    Xia F N, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechnol. 4 839

    [24]

    Ryzhii M, Otsuji T, Mitin V, Ryzhii V 2011 Jpn. J. Appl. Phys. 50 070117

    [25]

    Chen J, Badioli M, Alonso-Gonzlez P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, Garca de Abajo F J, Hillenbrand R, Koppens F H 2012 Nature 487 77

    [26]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82

    [27]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nature Mater. 11 865

    [28]

    Mittendorff M, Winnerl S, Kamann J, Eroms J, Weiss D, Schneider H, Helm M 2013 Appl. Phys. Lett. 103 021113

    [29]

    Muraviev A V, Rumyantsev S L, Liu G, Balandin A A, Knap W, Shur M S 2013 Appl. Phys. Lett. 103 181114

    [30]

    Zak A, Andersson M A, Bauer M, Matukas J, Lisauskas A, Roskos H G, Stake J 2014 Nano Lett. 14 5834

    [31]

    Spirito D, Coquillat D, Bonis S L, Lombardo A, Bruna M, Ferrari A C, Pellegrini V, Tredicucci A, Knap W, Vitiello M S 2014 Appl. Phys. Lett. 104 061111

    [32]

    Dawlaty J M, Shivaraman S, Strait J, George P, Chandrashekhar M, Rana F, Spencer M G, Veksler D, Chen Y 2008 Appl. Phys. Lett. 93 131905

    [33]

    Choi H, Borondics F, Siegel D A, Zhou S Y, Martin M C, Lanzara A, Kaindl R A 2009 Appl. Phys. Lett. 94 172102

    [34]

    Liu M, Yin X, UlinAvila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64

    [35]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [36]

    Sensale-Rodriguez B, Yan R, Rafique S, Zhu M, Li W, Liang X, Gundlach D, Protasenko V, Kelly M M, Jena D, Liu L, Xing H G 2012 Nano Lett. 12 4518

    [37]

    Sensale-Rodriguez B, Yan R, Zhu M, Jena D, Liu L, Xing H G 2012 Appl. Phys. Lett. 101 261115

    [38]

    Weis P, Garcia-Pomar J L, Hh M, Reinhard B, Brodyanski A, Rahm M 2012 ACS Nano 6 9118

    [39]

    Wen Q Y, Tian W, Mao Q, Chen Z, Liu W W, Yang Q H, Sanderson M, Zhang H W 2014 Sci. Rep. 4 7409

  • [1] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [2] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [3] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [4] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [5] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [7] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [8] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [9] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [10] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [11] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [14] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [16] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [17] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构. 物理学报, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [18] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [19] 梁文龙, 王亦曼, 刘伟, 李洪义, 王金淑. 用于真空电子太赫兹器件的微型热阴极电子束源研究. 物理学报, 2014, 63(5): 057901. doi: 10.7498/aps.63.057901
    [20] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
计量
  • 文章访问数:  11271
  • PDF下载量:  1878
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-07
  • 修回日期:  2015-06-05
  • 刊出日期:  2015-11-05

/

返回文章
返回