搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响

彭亚晶 蒋艳雪

引用本文:
Citation:

分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响

彭亚晶, 蒋艳雪

Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material

Peng Ya-Jing, Jiang Yan-Xue
PDF
导出引用
  • 含能材料中的微观缺陷是导致“热点”形成并相继引发爆轰的重要因素. 然而, 由于目前人们对材料内部微观缺陷的认识不足, 限制了对含能材料中“热点”形成微观机理的理解, 进而阻碍了含能材料的发展和应用. 为了洞悉含能材料内部微观缺陷特性及探索缺陷引发“热点”的形成机理, 利用第一性原理方法研究了分子空位缺陷对环三亚甲基三硝胺(RDX) 含能材料的几何结构、电子结构及振动特性的影响, 探讨了微观缺陷对初始“热点”形成的基本机理. 采用周期性模型分析了分子空位缺陷对RDX几何结构、电子能带结构、电子态密度及前线分子轨道的影响. 采用团簇模型分析了分子空位缺陷对RDX振动特性的影响. 结果发现, 分子空位缺陷的存在使其附近的N–N键变长, 分子结构变得松弛; 使导带中很多简并的能级发生分离, 电子态密度减小, 并使由N-2p和O-2p轨道形成的导带底和价带顶均向费米面方向移动, 降低了能带隙值, 增加了体系活性. 前线分子轨道及红外振动光谱的计算分析表明, 分子缺陷使最高已占分子轨道电荷主要集中在缺陷附近的分子上, 且分子中C–H键和N–N键能减弱. 这些特性表明, 分子空位缺陷的存在使体系能带隙变小, 并使缺陷附近的分子结构松弛, 电荷分布增多, 反应活性增强; 在外界能量激发下, 缺陷附近分子将变得不稳定, 分子中的C–H键或N–N键较易先发生断裂, 发生化学反应释放能量, 进而成为形成“热点”的根源.
    Micro-defects in an energetic material is an important factor for the formation of “hot spots” and successive explosive detonation. However, an understanding of the micro-mechanism of forming “hot spots” is limited and the development and application of energetic materials are hindered due to the less knowledge of micro-defects inside the materials. In order to understand the characteristics of micro-defects and explore the basic mechanism of forming “hot spots” caused by defects, the effects of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon (RDX) energetic materials are studied using the first-principle method, and the basic formation mechanism of initial “hot spot” is discussed. The effects of molecular vacancy defect on the RDX geometrical structure, electronic band structure, electronic density of states and frontier molecular orbitals are analyzed using the periodic model, while the influences of molecular vacancy defect on the vibration characteristics of RDX systems are calculated using the cluster model. Infrared vibration spectra and vibration characteristics of the internal molecules at the same vibration frequency for the perfect and defective RDX systems are obtained. It is found that vacancy defect makes the N–N bond near the defect long, and the molecular structure loose; some degenerate energy levels in the conduction band present separation and the electronic density of states decreases; the bottom of the conduction band and the top of the valence band contributed by N-2p and O-2p orbitals shift to the Fermi surface, which reduces the energy band gap and increases the activity of system. At the same time, the calculations of the frontier molecular orbitals and the infrared vibration spectra show that the molecular defect makes the charge distributions of highest occupied moleculer orbital concentrated mainly in the molecule near the defect, and the C–H and N–N bond energies decrease. For the defective system, some molecules around vacancy have large vibration amplitude towards the vacancy direction. This will be likely to cause hole to collapse and realize the conversion of energy. These characteristics indicate that the presence of molecular vacancy defect causes the energy band gap to decrease, the structures of the molecules near the defect become loose, the charge distribution increases and the reaction activity augments. When the defective system is loaded by external energy, the molecules near the defect are expected to be unstable. The C–H or N–N bonds in those molecules are more prone to rupture to cause chemical reaction and release of energy, which is expected to be responsible for the forming of “hot spot”. These results provide some basic micro-information about revealing the formation mechanism of “hot spots” caused by molecular vacancy defects
      通信作者: 彭亚晶, pengyajing@126.com
    • 基金项目: 国家自然科学基金(批准号: 21203012)、辽宁省优秀人才支持计划(批准号: LJQ2013118) 和北京理工大学爆炸科学与技术国家重点实验室开放基金(批准号: KFJJ14-08M)资助的课题.
      Corresponding author: Peng Ya-Jing, pengyajing@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203012), the Liaoning Excellent Talents Program, China (Grant No. LJQ2013118), and the Foundation of State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, China (Grant No. KFJJ14-08M).
    [1]

    Bouma R H, Duvalois W, van der Heijden A E 2013 J. Microscopy 252 263

    [2]

    LaBarbera D A, Zikry M A 2013 J. Appl. Phys. 113 243502

    [3]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [4]

    Peng Y J, Liu Y Q, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [5]

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601 (in Chinese) [王文亭, 胡冰, 王明伟 2013 物理学报 62 060601]

    [6]

    Boyd S, Murray J S, Politzer P 2009 J. Chem. Phys. 131 204903

    [7]

    Schackelford S A 2008 Central Europ. J. Energ. Mater. 5 75

    [8]

    Brill T B, James K 1993 Chem. Rev. 93 2667

    [9]

    Walley S M, Field J E, Greenaway M W 2006 Mater. Sci. Technol. 22 402

    [10]

    Duan X H, Li W P, Pei C H, et al. 2013 J. Mol. Model. 19 3893

    [11]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [12]

    Brown J A, LaBarbera D A, Zikry M A 2014 Model. Simul. Mater. Sci. Eng. 22 055013

    [13]

    Liu Z C, Wu Q, Zhu W H, Xiao H M 2015 Phys. Chem. Chem. Phys. 17 10568

    [14]

    Kuklja M M, Kunz A B 1999 J. Phys. Chem. B 103 8427

    [15]

    Kuklja M M, Kunz A B 2000 J. Phys. Chem. Solids 61 35

    [16]

    Kuklja M M, Stefanovich E V, Kunz A B 2000 J. Chem. Phys. 112 3417

    [17]

    Tsai D H 1991 J. Chem. Phys. 95 7497

    [18]

    Kuklja M M 2014 Adv. Quantum Chem. 69 71

    [19]

    Kuklja M M, Kunz A B 2000 J. Appl. Phys. 87 2215

    [20]

    Rice B M, Chabalowski C F 1997 J. Phys. Chem. A 46 8720

    [21]

    Choi C S, Prince E 1972 Acta Cryst. B 28 2857

    [22]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 物理学报 62 163102]

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Whitley V H 2005 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed. Matter Baltimore, Maryland, USA, July 31-August 5, 2005 p1357

    [25]

    Pan Q, Zheng L 2007 Chin. J. Energ. Mater. 15 676 (in Chinese) [潘清, 郑林 2007 含能材料 15 676]

  • [1]

    Bouma R H, Duvalois W, van der Heijden A E 2013 J. Microscopy 252 263

    [2]

    LaBarbera D A, Zikry M A 2013 J. Appl. Phys. 113 243502

    [3]

    Guo F, Zhang H, Hu H Q, Cheng X L 2014 Chin. Phys. B 23 046501

    [4]

    Peng Y J, Liu Y Q, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 物理学报 58 655]

    [5]

    Wang W T, Hu B, Wang M W 2013 Acta Phys. Sin. 62 060601 (in Chinese) [王文亭, 胡冰, 王明伟 2013 物理学报 62 060601]

    [6]

    Boyd S, Murray J S, Politzer P 2009 J. Chem. Phys. 131 204903

    [7]

    Schackelford S A 2008 Central Europ. J. Energ. Mater. 5 75

    [8]

    Brill T B, James K 1993 Chem. Rev. 93 2667

    [9]

    Walley S M, Field J E, Greenaway M W 2006 Mater. Sci. Technol. 22 402

    [10]

    Duan X H, Li W P, Pei C H, et al. 2013 J. Mol. Model. 19 3893

    [11]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [12]

    Brown J A, LaBarbera D A, Zikry M A 2014 Model. Simul. Mater. Sci. Eng. 22 055013

    [13]

    Liu Z C, Wu Q, Zhu W H, Xiao H M 2015 Phys. Chem. Chem. Phys. 17 10568

    [14]

    Kuklja M M, Kunz A B 1999 J. Phys. Chem. B 103 8427

    [15]

    Kuklja M M, Kunz A B 2000 J. Phys. Chem. Solids 61 35

    [16]

    Kuklja M M, Stefanovich E V, Kunz A B 2000 J. Chem. Phys. 112 3417

    [17]

    Tsai D H 1991 J. Chem. Phys. 95 7497

    [18]

    Kuklja M M 2014 Adv. Quantum Chem. 69 71

    [19]

    Kuklja M M, Kunz A B 2000 J. Appl. Phys. 87 2215

    [20]

    Rice B M, Chabalowski C F 1997 J. Phys. Chem. A 46 8720

    [21]

    Choi C S, Prince E 1972 Acta Cryst. B 28 2857

    [22]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese) [程和平, 但加坤, 黄智蒙, 彭辉, 陈光华 2013 物理学报 62 163102]

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Whitley V H 2005 Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed. Matter Baltimore, Maryland, USA, July 31-August 5, 2005 p1357

    [25]

    Pan Q, Zheng L 2007 Chin. J. Energ. Mater. 15 676 (in Chinese) [潘清, 郑林 2007 含能材料 15 676]

  • [1] 杨静, 冯少蓉, 张涛, 牛旭平, 王荣, 李敏, 于润升, 曹兴忠, 王宝义. B位空位补偿型钐掺杂PZT(54/46)陶瓷中的缺陷分析及其对压电性能的影响. 物理学报, 2024, 73(7): 077701. doi: 10.7498/aps.73.20231872
    [2] 刘东静, 周福, 陈帅阳, 胡志亮. 氮化镓/石墨烯/碳化硅异质界面热输运特性的分子动力学研究. 物理学报, 2023, 72(15): 157901. doi: 10.7498/aps.72.20230537
    [3] 刘东静, 王韶铭, 杨平. 石墨烯/碳化硅异质界面热学特性的分子动力学模拟. 物理学报, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [4] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质. 物理学报, 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [5] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理. 物理学报, 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [6] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性. 物理学报, 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [7] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [8] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [9] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [10] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [11] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究. 物理学报, 2013, 62(20): 203101. doi: 10.7498/aps.62.203101
    [12] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料. 物理学报, 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [13] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [14] 陈青云, 孟川民, 卢铁城, 徐明, 胡又文. 中子嬗变掺杂前后Ge纳米晶的结构和性质. 物理学报, 2010, 59(9): 6473-6479. doi: 10.7498/aps.59.6473
    [15] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [16] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析. 物理学报, 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] 袁剑辉, 程玉民, 张振华. 空位结构缺陷对C纳米管弹性性质的影响. 物理学报, 2009, 58(4): 2578-2584. doi: 10.7498/aps.58.2578
    [18] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [19] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] 刘廷禹, 张启仁, 庄松林. 含铅空位的PbWO4晶体光学性质及其偏振特性的研究. 物理学报, 2005, 54(8): 3780-3786. doi: 10.7498/aps.54.3780
计量
  • 文章访问数:  4780
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2015-10-01
  • 刊出日期:  2015-12-05

/

返回文章
返回