搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五边形截面的Ag纳米线局域表面等离子体共振模式

徐天宁 李翔 贾文旺 隋成华 吴惠桢

引用本文:
Citation:

五边形截面的Ag纳米线局域表面等离子体共振模式

徐天宁, 李翔, 贾文旺, 隋成华, 吴惠桢

Localized surface plasmon resonance modes in Ag nanowires with pentagonal cross sections

Xu Tian-Ning, Li Xiang, Jia Wen-Wang, Sui Cheng-Hua, Wu Hui-Zhen
PDF
导出引用
  • 五边形截面的单晶Ag纳米线对ZnO量子点荧光具有增强的现象. 为解释这一现象, 利用时域有限差分法对五边形截面的Ag纳米线的局域表面等离子体共振模式进行了理论模拟. 结果表明, 五边形截面的Ag纳米线在紫外区域存在两个消光峰, 分别由Ag纳米线的横向偶极共振(340 nm)和四极共振(375 nm)引起; 这两个消光峰与ZnO量子点荧光增强峰相一致, 而且随着Ag纳米线的半径增大而红移; 消光峰对应的共振模式取决于Ag纳米线的截面形状; 根据Ag纳米线电场增强倍数与激发光波长变化关系曲线可知, 最大增强电场位于五边形截面的顶点处, 而边线处电场增强较小. 理论模拟的结果较好地解释了Ag纳米线/ZnO量子点体系的荧光增强现象, 也为Ag纳米线在提高半导体材料发光效率、生物探测等方面的应用提供有益的参考.
    Ag nanowires have attracted much attention due to their potential applications in spontaneous emission amplifiers, logic gates, single photon sources, and biomolecule detection. Single crystal Ag nanowires are prepared by chemical method. The Ag nanowires exhibit pentagonal cross sections with an average radius of 80 nm. Two enhanced emission peaks (345 and 383 nm) are observed in ZnO quantum dots when mixing with Ag nanowires. To explore the origination of the enhancement, the localized surface plasmon resonance modes of Ag nanowires are investigated theoretically by the finite difference time domain method. The extinction spectrum, electric field distribution and electric field enhancement factor versus excitation wavelength of Ag nanowires are simulated. The results show that the Ag nanowires have two extinction peaks in the ultraviolet region: the 340 nm peak originating from the transverse dipole resonance (DR) and the 375 nm peak belonging to the transverse quadrupole resonance (QR). The same extinction peaks are also observed in the experimental measurement, which are consistent with the emission enhancement peaks of ZnO quantum dots. Compared with that of the DR peak, the red shift of the QR peak becomes more obvious with the increase of Ag nanowire radius. The resonance mode of the extinction peak depends on the cross sectional shape of the Ag nanowire. In the case of the traditional Ag nanowire with circular cross section, DR is excited by long wavelength light while QR is excited by short wavelength light. According to the curves of electric field enhancement factor vs excitation wavelength, the maximum enhanced electric field is observed at the apex of the pentagonal section of Ag nanowire, and the enhancement factor reaches 180 times for excitation wavelength of 377 nm. However, the electric field at the pentagon edge is enhanced only by several times. The simulation results give a reasonable explanation to the emission enhancement in Ag nanowire/ZnO quantum dot system, and indicate that Ag nanowires can be applied to improving the luminescent efficiency of semiconductor materials, biological detection, etc.
      通信作者: 徐天宁, xtn9886@zju.edu.cn
    • 基金项目: 浙江省自然科学基金(批准号: Y1110549, LQ14A040005)资助的课题.
      Corresponding author: Xu Tian-Ning, xtn9886@zju.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y1110549, LQ14A040005).
    [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65-66

    [2]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Duyne R P V 2008 Nature Mater. 7 442

    [3]

    Klar T, Perner M, Grosse S, Plessen G V, Spirkl W, Feldmann J 1998 Phys. Rev. Lett. 80 4249

    [4]

    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601

    [5]

    Cheng P H, Li D S, Yuan Z Z, Chen P L, Yang D R 2008 Appl. Phys. Lett. 92 041119

    [6]

    Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102

    [7]

    Qiao Q, Shan C X, Zheng J, Li B H, Zhang Z Z, Zhang L G, Shen D Z 2012 J. Mater. Chem. 22 9481

    [8]

    Xu T N, Hu L, Jin S Q, Zhang B P, Cai X K, Wu H Z, Sui C H 2012 Appl. Sur. Sci. 258 5886

    [9]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [10]

    Pan D, Wei H, Xu H X 2013 Chin. Phys. B 22 097305

    [11]

    Singh D, Dasgupta A, Aswathy V G, Tripathi P N, Kumar G V P 2015 Opt. Lett. 40 1006

    [12]

    Xiong X, Zou C L, Ren X F, Liu A P, Ye Y X, Sun F W, Guo G C 2013 Laser Photon. Rev. 7 901

    [13]

    Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S 2004 J. Phys. Chem. B 108 16713

    [14]

    Xu T N, Li J, Li X, Sui C H, Wu H Z 2014 Chin. J. Lumin. 35 404 (in Chinese) [徐天宁, 李佳, 李翔, 隋成华, 吴惠桢 2014 发光学报 35 404]

    [15]

    Sun Y G, Mayers B, Herricks T, Xia Y N 2003 Nano Lett. 3 955

    [16]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J. 11 454

    [17]

    Kelly L K, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

  • [1]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer) pp65-66

    [2]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Duyne R P V 2008 Nature Mater. 7 442

    [3]

    Klar T, Perner M, Grosse S, Plessen G V, Spirkl W, Feldmann J 1998 Phys. Rev. Lett. 80 4249

    [4]

    Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A 2004 Nature Mater. 3 601

    [5]

    Cheng P H, Li D S, Yuan Z Z, Chen P L, Yang D R 2008 Appl. Phys. Lett. 92 041119

    [6]

    Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W, Sun H D 2009 Appl. Phys. Lett. 94 151102

    [7]

    Qiao Q, Shan C X, Zheng J, Li B H, Zhang Z Z, Zhang L G, Shen D Z 2012 J. Mater. Chem. 22 9481

    [8]

    Xu T N, Hu L, Jin S Q, Zhang B P, Cai X K, Wu H Z, Sui C H 2012 Appl. Sur. Sci. 258 5886

    [9]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [10]

    Pan D, Wei H, Xu H X 2013 Chin. Phys. B 22 097305

    [11]

    Singh D, Dasgupta A, Aswathy V G, Tripathi P N, Kumar G V P 2015 Opt. Lett. 40 1006

    [12]

    Xiong X, Zou C L, Ren X F, Liu A P, Ye Y X, Sun F W, Guo G C 2013 Laser Photon. Rev. 7 901

    [13]

    Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S 2004 J. Phys. Chem. B 108 16713

    [14]

    Xu T N, Li J, Li X, Sui C H, Wu H Z 2014 Chin. J. Lumin. 35 404 (in Chinese) [徐天宁, 李佳, 李翔, 隋成华, 吴惠桢 2014 发光学报 35 404]

    [15]

    Sun Y G, Mayers B, Herricks T, Xia Y N 2003 Nano Lett. 3 955

    [16]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J. 11 454

    [17]

    Kelly L K, Coronado E, Zhao L L, Schatz G C 2003 J. Phys. Chem. B 107 668

  • [1] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] 熊磊, 丁洪伟, 李光元. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式. 物理学报, 2022, 71(4): 047802. doi: 10.7498/aps.71.20211629
    [3] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [4] 熊磊. 银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体共振. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211629
    [5] 张兴坊, 刘凤收, 闫昕, 梁兰菊, 韦德全. 同心椭圆柱-纳米管结构的双重Fano共振研究. 物理学报, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [6] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [7] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构. 物理学报, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [8] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [9] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [10] 陈文波, 龚学余, 邓贤君, 冯军, 黄国玉. THz电磁波在时变非磁化等离子体中的传播特性研究. 物理学报, 2014, 63(19): 194101. doi: 10.7498/aps.63.194101
    [11] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析. 物理学报, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [12] 朱小敏, 任新成, 郭立新. 指数型粗糙地面与上方矩形截面柱宽带电磁散射的时域有限差分法研究. 物理学报, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [13] 刘建晓, 张郡亮, 苏明敏. 基于时域有限差分法的各向异性铁氧体圆柱电磁散射分析. 物理学报, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [14] 任新成, 郭立新, 焦永昌. 雪层覆盖的粗糙地面与上方矩形截面柱复合电磁散射的时域有限差分法研究. 物理学报, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [15] 蓝朝晖, 胡希伟, 刘明海. 大面积表面波等离子体源微波功率吸收的数值模拟研究. 物理学报, 2011, 60(2): 025205. doi: 10.7498/aps.60.025205
    [16] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究. 物理学报, 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [17] 章海锋, 马力, 刘少斌. 磁化等离子体光子晶体缺陷态的研究. 物理学报, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [18] 闫长春, 薛国刚, 刘 诚, 陈 浩, 崔一平. 产生纳米级暗中空光束的方法研究. 物理学报, 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [19] 刘少斌, 顾长青, 周建江, 袁乃昌. 磁化等离子体光子晶体的FDTD分析. 物理学报, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [20] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析. 物理学报, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
计量
  • 文章访问数:  5502
  • PDF下载量:  661
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-31
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-12-05

/

返回文章
返回