搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低密度泡沫金提升黑腔腔壁再发射率的实验研究

张璐 董云松 景龙飞 林雉伟 谭秀兰 况龙钰 黎航 尚万里 张文海 李志超 詹夏宇 袁光辉 李海 江少恩 杨家敏 丁永坤

引用本文:
Citation:

低密度泡沫金提升黑腔腔壁再发射率的实验研究

张璐, 董云松, 景龙飞, 林雉伟, 谭秀兰, 况龙钰, 黎航, 尚万里, 张文海, 李志超, 詹夏宇, 袁光辉, 李海, 江少恩, 杨家敏, 丁永坤

Experimental study on improving hohlraum wall reemission ratio by low density gold foam

Zhang Lu, Dong Yun-Song, Jing Long-Fei, Lin Zhi-Wei, Tan Xiu-Lan, Kuang Long-Yu, Li Hang, Shang Wan-Li, Zhang Wen-Hai, Li Zhi-Chao, Zhan Xia-Yu, Yuan Guang-Hui, Li Hai, Jiang Shao-En, Yang Jia-Min, Ding Yong-Kun
PDF
导出引用
  • 提高黑腔辐射温度对高能量密度物理研究, 尤其是惯性约束聚变研究至关重要. 提高黑腔腔壁再发射率是增强黑腔辐射温度的一个有效措施. 理论研究发现低密度泡沫材料能够降低腔壁能量损失, 进而提高再发射率. 在神光Ⅲ原型激光装置上开展了泡沫金和固体金再发射能流对比测量实验, 证实了该理论研究. 实验利用透射光栅得到具有空间分辨和谱分辨的X射线发射, 测量结果表明在190 eV的黑腔辐射场作用下, 0.4 g/cc密度的泡沫金可比固体金提升约20%的X射线能流发射, 并且增加的发射以1 keV以下的低能能段为主. 自相似解得到的理论结果和MULTI 1D模拟计算的结果均表明泡沫金可提高腔壁再发射能流, 与实验结果定性一致. 研究结果表明, 泡沫金作为黑腔腔壁材料可提高腔壁再发射率, 增强黑腔辐射温度, 具有诱人的应用前景.
    It is important to improve the hohlraum radiation temperature for the research of high energy density physics, especially for study of inertial confinement fusion. Increasing the wall reemission ratio is an effective way to improve the temperature. It is found in theory that low density foam could reduce hohlraum wall energy loss, and then increase hohlraum temperature. In previous studies, experiments have shown that laser-to-X-ray conversion is enhanced by Au foam. However, improving reemission ratio is more important to increase hohlraum radiation temperature, because most of energy is lost in the wall.In this paper, we report our experiments carried out on SGⅢ prototype to compare the X-ray flux reemitted by Au foam and that by Au. For the experimental design, Au solid and Au foam are irradiated symmetrically along the axis by hohlraum radiation source Tr(t), which is assessed by broadband X-ray spectrometer flat-response X-ray diodes. The measured peak temperature is about 190 eV. Reemission flux from sample is measured by transmission grating spectrometer (TGS). The space-resolved image for pure Au sample shows that the hohlraum radiation is asymmetrical along the axis in the experimental conditions, temperature of top is higher than that at the bottom, which is consistent with simulation results obtained by using IRAD3D code. In order to compare the reemission flux from Au solid sample and that from Au foam sample in same conditions, we need to correct the symmetry of hohlraum radiation. By multiplying the ratio of top flux to bottom flux in pure Au target by the bottom flux in Au-Au foam target, where Au foam is on, we make sure that they are ablated by the same radiation source. The calculated results show that X-ray flux is increased by 20% by Au foam of 0.4 g/cc density when the hohlraum temperature is 190 eV. The typical observed time-integrated X-ray reemission spectra for Au solid and Au foam by TGS are also shown. We see that N-band and O-band reemission are clearly enhanced by Au foam, and the O-band reemission is almost the same as M-band reemission. The increased flux concentrates below 1 keV of the soft X-ray emission.The self-similar solution results and MULTI 1D simulation results show that the wall loss energy fraction is saved by Au foam, whose relation to reemission flux can be described by a simple expression. The theoretical solution shows that the emission flux increases about 10%, and the MULTI simulation indicates that the emission flux increases about 6.8%. They are in qualitative agreement with the experiments results. These results show an alluring prospect for Au foam to be used as hohlraum wall.
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211

    [3]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [4]

    Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106

    [5]

    Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201

    [6]

    Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005

    [7]

    Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 物理学报 60 055207]

    [8]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)

    [9]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [10]

    Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092

    [11]

    Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093

    [12]

    Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [15]

    Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105

    [16]

    Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102

    [17]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504

    [19]

    Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459

    [20]

    Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 物理学报 62 170602]

    [21]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [22]

    Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779

    [23]

    Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211

    [3]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [4]

    Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106

    [5]

    Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201

    [6]

    Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005

    [7]

    Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 物理学报 60 055207]

    [8]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)

    [9]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [10]

    Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092

    [11]

    Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093

    [12]

    Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [15]

    Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105

    [16]

    Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102

    [17]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504

    [19]

    Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459

    [20]

    Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 物理学报 62 170602]

    [21]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [22]

    Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779

    [23]

    Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002

  • [1] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测. 物理学报, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [2] 蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆. Z箍缩动态黑腔冲击波辐射图像诊断. 物理学报, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [3] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究. 物理学报, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [4] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [5] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [6] 王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业. 基于神光Ⅲ原型的背向散射实验技术研究. 物理学报, 2013, 62(17): 175202. doi: 10.7498/aps.62.175202
    [7] 张璐, 杨家敏. X射线烧蚀泡沫-固体靶增压机理研究. 物理学报, 2012, 61(4): 045203. doi: 10.7498/aps.61.045203
    [8] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [9] 赵学峰, 李三伟, 蒋刚, 王传珂, 李志超, 胡峰, 李朝光. 超热电子与金黑腔靶作用产生硬X射线的蒙特卡罗模拟. 物理学报, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [10] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究. 物理学报, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [11] 李三伟, 易荣清, 蒋小华, 何小安, 崔延莉, 刘永刚, 丁永坤, 刘慎业, 蓝可, 李永升, 吴畅书, 古培俊, 裴文兵, 贺贤土. 神光Ⅲ原型1 ns激光驱动黑腔辐射温度实验研究. 物理学报, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [12] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [13] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究. 物理学报, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [14] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [15] 孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚. 黑腔靶辐射温度实验研究. 物理学报, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [16] 叶文华, 张维岩, 贺贤土. 烧蚀瑞利-泰勒不稳定性线性增长率的预热致稳公式. 物理学报, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [17] 杨家敏, 丁耀南, 孙可煦, 黄天喧, 张文海, 王耀梅, 胡 昕, 张保汉, 郑志坚. 1.053μm激光辐照金箔靶发射X射线能谱的实验研究. 物理学报, 2000, 49(12): 2408-2413. doi: 10.7498/aps.49.2408
    [18] 黄天, 孙可煦, 郑志坚, 易荣清, 丁永坤, 丁耀南, 崔延莉, 唐道源. 软X射线辐射加热金盘靶的X射线再发射. 物理学报, 1998, 47(1): 40-46. doi: 10.7498/aps.47.40
    [19] 张钧, 裴文兵, 古培俊, 隋成之, 常铁强. 辐射烧蚀的自调制准定态模型. 物理学报, 1996, 45(10): 1677-1687. doi: 10.7498/aps.45.1677
    [20] 丁永坤, 李文洪, 蒋小华, 李三伟, 赵雪薇, 王红斌, 丁耀南, 刘忠礼, 唐道源, 郑志坚, 江文勉. 1.054μm激光产生的高纯度黑腔辐射场. 物理学报, 1995, 44(3): 350-356. doi: 10.7498/aps.44.350
计量
  • 文章访问数:  5114
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-30
  • 修回日期:  2015-10-16
  • 刊出日期:  2016-01-05

/

返回文章
返回