搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征

弭光宝 黄旭 曹京霞 王宝 曹春晓

引用本文:
Citation:

摩擦点火Ti-V-Cr阻燃钛合金燃烧产物的组织特征

弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓

Microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloy by frictional ignition

Mi Guang-Bao, Huang Xu, Cao Jing-Xia, Wang Bao, Cao Chun-Xiao
PDF
导出引用
  • 采用摩擦氧浓度实验方法, 结合原位观察、扫描电镜、能谱仪和X-射线衍射分析, 系统研究Ti-V-Cr 阻燃钛合金燃烧产物的微观组织形貌、燃烧反应过程的合金元素分布规律及微观机理. 结果表明: Ti-V-Cr 阻燃钛合金燃烧过程发出闪亮耀眼的白光, 具有典型金属燃烧的火焰特征. 燃烧产物主要有TiO2, V2O5和Cr2O3三种氧化物, 该混合氧化物以分散颗粒和致密连续体存在. 分散颗粒为规则的球形; 致密连续燃烧产物的微观组织具有分区特征, 从合金基体至燃烧表面依次为过渡区、热影响区、熔凝区和燃烧区. 其中, 过渡区存在一些微小的颗粒状凸起, 且有一定方向性; 热影响区中形成大量V基固溶体相和少量的Ti基固溶体相, V基固溶体相上存在Ti的含量远高于基体的针状析出物; 熔凝区中, 大量的Ti基固溶体中存在少量的V基固溶体; 燃烧区主要为Ti, V和Cr的氧化物混合物. 热影响区的V基固溶体相降低了Ti元素向熔凝区的迁移速率, 减慢了燃烧区Ti与O的优先反应; 燃烧区形成的TiO2, V2O5和Cr2O3混合氧化物和熔凝区O在Ti中大量固溶共同终止了O向合金基体的继续扩散, 从而使Ti-V-Cr阻燃钛合金表现出优异的阻燃功能性.
    Titanium fire in the aero-engine is a typical accident caused by ignition and burning of titanium alloy, which leads to a huge damage. Some articles wrote it as to turn pale at the mention of titanium. Fireproof titanium alloy, a new type of structural titanium alloy with fireproof function, has been developed to prevent titanium from fire hazard and to ensure safe and reliable service of aero-engine. In view of the lack of clear understanding of the microscopic mechanisms found currently for the structural functionality of fireproof titanium alloys, in this work, using frictional ignition technology in oxygen-rich environment (friction oxygen concentration method), associated with in-situ observation, SEM, EDS and XRD analyses, the microstructure characteristics of burning products of Ti-V-Cr fireproof titanium alloys are investigated and the element distribution law associated with microscopic mechanism during combustion reaction process is disclosed. Results show that Ti-V-Cr fireproof titanium alloys produce dazzling white light during combustion, with the typical flame characteristics of metal combustion. The generated products after burning are mainly TiO2, V2O5 and Cr2O3 oxides, in the form of dispersive particles and dense continuous body. The dispersive particles are in regular spheric shape, with a size of 10-50 m; the dense continuous products after burning presents divisional feature. After the combustion lasts 18 s, four distinct zones form from the alloy matrix to the combustion surface and they are in the sequence of transitional zone, heat-affected zone fusion zone, and combustion zone, with sizes of 40-50, 200-210, 60-70, and 18-21 m respectively. Further, some small granular shaped bulges exist in the transitional zone, in some fixed directions; in the heat-affected zone, a large number of V-based solid solution and some Ti-based solid solution form, and the titanium containing V-based solid solution is much higher than the needle-like precipitation phase in the matrix. In the fusion zone, there are some V-based solid solutions in most of Ti-based solid solution; while, the combustion zone mainly contains the mixed oxides of Ti, V, and Cr. The V-based solid solution in the heat-affected zone reduces the diffusion rate of titanium to the fusion zone, slowing the preferential reaction between titanium and oxygen in the combustion zone; while the generated mixed oxides of TiO2, V2O5, Cr2O3, etc. in the combustion zone and the solution of oxygen in titanium in the fusion zone jointly prevent the diffusion of oxygen to the alloy matrix, thus the Ti-V-Cr fireproof titanium alloys can have excellent fireproof functions.
      通信作者: 弭光宝, miguangbao@163.com
    • 基金项目: 国家自然科学基金 (批准号: 51471155) 和航空科学基金 (批准号: 20123021004) 资助的课题.
      Corresponding author: Mi Guang-Bao, miguangbao@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51471155) and the Aviation Science Foundation of China (Grant No. 20123021004).
    [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1]

    Hочовнaя Н A, Aлексеев Е Б, Изотовa A Ю, Hо-вaк A Б 2012 Tumaн 4 42

    [2]

    Strobridge T R, Moulder J C, Clark A F 1979 Titanium Combustion in Turbine Engines (Springfield: National Technical Information Service) FAA-RD-79-51 p15

    [3]

    Huang X, Cao C X, Ma J M, Wang B, Gao Y 1997 J. Mater. Eng. 8 11 (in Chinese) [黄旭, 曹春晓, 马济民, 王宝, 高扬 1997 材料工程 8 11]

    [4]

    Luo Q S, Li S F, Pei H P 2012 J. Aerospace Power 27 2763 (in Chinese) [罗秋生, 李世峰, 裴会平 2012 航空动力学报 27 2763]

    [5]

    Berczik D M US Patent 5 176 762 [1993-01-05]

    [6]

    Steve T, Craig W 1995 Adv. Mater. Process. 4 23

    [7]

    Anderson V, Manty B 1978 Titanium Alloy Ignition and Combustion (Florida: Pratt & Whitney Aircraft Group) 76083-30 p10

    [8]

    Борисова Е А, Скляров Н М 2007 Авиационные материалы и технологи: Выпуск Горение и пожаробезопасность титановых сплавов (Москва: ВИАМ) p21

    [9]

    Cao C X 2006 International Aviation 8 59 (in Chinese) [曹春晓 2006 国际航空 8 59]

    [10]

    Cao J X, Huang X, Mi G B, Sha A X, Wang B 2014 J. Aeronaut. Mater. 34 92 (in Chinese) [曹京霞, 黄旭, 弭光宝, 沙爱学, 王宝 2014 航空材料学报 34 92]

    [11]

    Huang X, Zhu Z S, Wang H H 2012 Advanced Aeronautical Titanium Alloys and Applications (Beijing: National Defense Industry Press) p276 [黄旭, 朱知寿, 王红红 2012 先进航空钛合金材料与应用 (北京: 国防工业出版社) 第276页]

    [12]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Metal Mater. Eng. 28 77 (in Chinese) [赵永庆, 周廉, 邓炬 1999 稀有金属材料与工程 28 77]

    [13]

    Littman F E, Church F M, Kinderman E M 1961 Journal of the Less-Common Metals 3 367

    [14]

    Merzhanov A G 1975 Aiaa J. 13 209

    [15]

    Khaikin B I, Bloshenko V N, Merzhanov A G 1970 Combustion, Explosion and Shock Waves 6 412

    [16]

    Rozenband V I 2004 Combustion and Flame 137 366

    [17]

    Beloni E, Dreizin E L 2011 Combust. Sci. Tech. 183 823

    [18]

    Shafirovich E, Teoh S K, Varma A 2008 Combustion and Flame 152 262

    [19]

    Брейтер А Л, Мальцев В М, Попов Е И 1977 Физика горения и взрыва 13 558

    [20]

    Болобов В И 2002 Физика горения и взрыва 38 1

    [21]

    Болобов В И, Шнеерсон Я М, Лапин А Ю 2011 Цветные металлы 12 98

    [22]

    Mi G B, Huang X, Cao J X, Wang B, Cao C X China Patent ZL201218003649.0 [2012-09-04] (in Chinese) [弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 中国专利 ZL201218003649.0 2012-09-04]

    [23]

    Mi G B, Huang X, Cao J X, Cao C X 2014 Acta Metall. Sin. 50 575 (in Chinese) [弭光宝, 黄旭, 曹京霞, 曹春晓 2014 金属学报 50 575]

    [24]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B 2014 J. Aeronaut. Mater. 34 83 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝 2014 航空材料学报 34 83]

    [25]

    Mi G B, Cao C X, Huang X, Cao J X, Wang B, Sui Nan 2016 J. Mater. Eng. 44 1 (in Chinese) [弭光宝, 曹春晓, 黄旭, 曹京霞, 王宝, 隋楠 2016 材料工程 44 1]

    [26]

    Mi G B, Huang X, Cao J X, Cao C X Huang X S 2013 Trans. Nonferrous Met. Soc. China 23 2270

    [27]

    Mi G B, Huang X S, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409

    [28]

    Yang Z N, Liu Q, Zhu Z Q, Zhang J, Liu Q J 2009 Mater. Sci. Eng. Powder Metall. 14 63 (in Chinese) [杨贞妮, 刘强, 朱忠其, 张瑾, 柳清菊 2009 粉末冶金材料科学与工程 14 63]

    [29]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys. Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [30]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synthetic Crystals 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [31]

    Li S X, Wan R F, Yang S W, Long Y 2011 Progress Report on China Nuclear Sci. Tech. 2 133 (in Chinese) [李顺兴, 万荣发, 杨善武, 龙毅 2011中国核科学技术进展报告 2 133]

    [32]

    Лякишев Н П 1996 Диаграммы состояния двойных метоллических систем (Москва: Машиностроение) p397

    [33]

    Kubaschewski O, Hopkins E B 1962 Oxidation of Metals and Alloys (London: Butterworths) p73

    [34]

    Birks N, Meier G H, Pettit F S 2009 Introduction to the High Temperature Oxidation of Metals (London: Cambridge University Press) p31

    [35]

    Каракозов Э С 1977 Диффузионная сварка титана (Москва: Металлургия) p58

    [36]

    Froes F H, Caplan I 1993 Titanium'92: Science and Technology (Warrendale: TMS) p2819

    [37]

    Popel P S, Calvo-Dahlborg M, Dahlborg U 2007 J. Non-Cryst. Solids 353 3243

    [38]

    Mi G B, Li P J, Huang X, Cao C X 2012 Acta Phys. Sin. 61 186106 (in Chinese) [弭光宝, 李培杰, 黄旭, 曹春晓 2012 物理学报 61 186106]

    [39]

    Stephen R T 2000 An Introduction to Combustion: Concepts and Application (New York: McGraw-Hill Higher Education) p125

  • [1] 吴明宇, 弭光宝, 李培杰. 近α型高温钛合金起燃机理研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240003
    [2] 史芳杰, 李南, 郭峻铭, 陈柏屹, 李飒腾, 刘浩良, 郭建业, 李乾武, 李烨飞, 肖冰. Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究. 物理学报, 2023, 72(13): 136401. doi: 10.7498/aps.72.20230291
    [3] 吴明宇, 弭光宝, 李培杰, 黄旭. 600 ℃高温钛合金燃烧组织演变及机理. 物理学报, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [4] 张家滕, 徐吉元, 金佳莹, 孟睿阳, 董生智. 晶界添加PrCu合金对(Pr, Nd, Dy)32.2Co13Cu0.4FebalB0.98M1.05磁体磁性能与微观组织的影响. 物理学报, 2022, 71(16): 167502. doi: 10.7498/aps.71.20220406
    [5] 王志青, 姚晓萍, 沈杰, 周静, 陈文, 吴智. 锆钛酸铅薄膜的铁电疲劳微观机理及其耐疲劳性增强. 物理学报, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [6] 游家学, 王锦程, 王理林, 王志军, 李俊杰, 林鑫. 悬浮液凝固研究进展. 物理学报, 2019, 68(1): 018101. doi: 10.7498/aps.68.20181645
    [7] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度. 物理学报, 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [8] 杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅. 两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟. 物理学报, 2013, 62(18): 186103. doi: 10.7498/aps.62.186103
    [9] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [10] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [11] 丁勇, 陈仁杰, 郭帅, 刘兴民, 李东, 闫阿儒. 添加Dy元素对钕铁硼速凝片微观组织和磁特性的影响. 物理学报, 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [12] 郭玉福, 李荣德, 刘贵立. Ca,Be在镁合金中的阻燃作用. 物理学报, 2009, 58(5): 3315-3318. doi: 10.7498/aps.58.3315
    [13] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [14] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [15] 刘贵立. Mg-Zr合金微观组织电子结构研究. 物理学报, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [16] 刘贵立. 镁合金稀土阻燃机理电子理论研究. 物理学报, 2008, 57(1): 434-437. doi: 10.7498/aps.57.434
    [17] 张国英, 张 辉, 方戈亮, 李昱材. Bi,Sb合金化对AZ91镁合金组织、性能影响机理研究. 物理学报, 2005, 54(11): 5288-5292. doi: 10.7498/aps.54.5288
    [18] 杨 森, 苏云鹏, 黄卫东, 周尧和. 激光快速凝固条件下Cu-31.4%Mn合金的微观组织特征. 物理学报, 2003, 52(1): 81-86. doi: 10.7498/aps.52.81
    [19] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [20] 张家泰, 何斌, 贺贤土, 常铁强, 许林宝, N.E.安德列夫. 激光聚变快点火机理研究. 物理学报, 2001, 50(5): 921-925. doi: 10.7498/aps.50.921
计量
  • 文章访问数:  5708
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-12-25
  • 刊出日期:  2016-03-05

/

返回文章
返回