搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温光滑壁面上水滴撞击结冰行为

胡海豹 何强 余思潇 张招柱 宋东

引用本文:
Citation:

低温光滑壁面上水滴撞击结冰行为

胡海豹, 何强, 余思潇, 张招柱, 宋东

Freezing behavior of droplet impacting on cold surfaces

Hu Hai-Bao, He Qiang, Yu Si-Xiao, Zhang Zhao-Zhu, Song Dong
PDF
导出引用
  • 采用高速摄像技术测试低温光滑壁面上水滴撞击结冰过程, 分析了撞击速度、壁面温度和材料热导率对水滴撞击铺展、振荡及结冰行为的影响规律. 结果表明, 低温壁面造成水滴最大铺展直径缩小, 且结冰时间随温度降低而缩短; 当撞击We数提高时, 水滴最大铺展直径增大, 而振荡和结冰时间减小; 同时材料热导率越高, 最大铺展直径越小, 结冰越迅速. 另外, 从热力学角度推导出水滴撞击结冰时间的理论公式, 预测误差5.3%.
    Exploring the freezing process and its potential mechanism of the droplets impacting on a solid surface is desperately desired, owing to its anti-icing applications in aircraft, cable, radar, etc. On the controllable low temperature test equipment, the freezing dynamic behaviors of droplets impacting on three cold plates, made of copper, aluminum and silicon, are recorded by a high-speed camera in this paper, and characterized by the droplet spreading diameter, oscillation and freezing time. Here, the freezing behavior of droplets is predicated by observing the color change of the droplet. Through the experimental exploration and theoretical analysis, we reveal the effects of the impacting speed, surface temperature and thermal conductivity of material on the freezing dynamics of the droplet. We demonstrate that a cold surface shrinks the maximum spreading diameter of droplet compared with the surface at ambient temperature; the lower the surface temperature, the shorter the freezing time would be and the smaller the maximum spreading diameter would be; the maximum spreading diameter increases with increasing Weber number, whereas the oscillation and freezing time decrease. Meanwhile, the higher the material thermal conductivity, the shorter the freezing time would be, and the bigger the rising slope of the maximum spreading diameter with increasing Weber number will be. A function to predict the freezing time is derived from thermodynamic condition. The calculated values are in good agreement with the experimental data, with the maximum relative error of less than 5.3%.
      通信作者: 胡海豹, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn ; 宋东, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:51335010)、中央高校基本科研业务费(批准号:3102015ZY017)和西北工业大学研究生创意创新种子基金(批准号:Z2015002)资助的课题.
      Corresponding author: Hu Hai-Bao, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn ; Song Dong, huhaibao@nwpu.edu.cn;songdong1226@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335010), the Fundamental Research Fund for the Central Universities, China (Grant No. 3102015ZY017), and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University, China (Grant No. Z2015002).
    [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈盛强, 陈觉先, 李熠桥 2012 物理学报 61 184702]

    [3]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [4]

    Okoroafor E U, Newborough M 2000 Appl. Therm. Eng. 20 737

    [5]

    Laforte J L, Allaire M A, Laflamme J 1998 Atmos. Res. 46 143

    [6]

    Hochart C, Fortin G, Perron J 2008 Wind Energy J. 11 319

    [7]

    Zou M, Beckford S, Wei R 2011 Appl. Surf. Sci. 257 3786

    [8]

    Zhou L, Xu H J, Long S K 2010 China Safety Science Journal 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科 2010 中国安全科学学报 20 105]

    [9]

    Hu H, Jin Z Y 2010 Int. J. Multiphas. Flow 36 672

    [10]

    Wang J T, Liu Z L, Gou Y J 2006 Sci. China Ser. E 49 590

    [11]

    Hoke J L 2000 Ph. D. Dissertation (USA Illinois: University of Illinois)

    [12]

    Huang L Y, Liu Z L, Liu Y M 2010 J. Eng. Thermophys.-Rus 31 647 (in Chinese) [黄玲艳, 刘中良, 刘耀民 2010 工程热物理学报 31 647]

    [13]

    Zhu W Y 2007 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [朱卫英 2007 硕士学位论文(大连: 大连理工大学)]

    [14]

    Antonini C, Innocenti M, Horn T 2011 Cold Reg. Sci. Technol. 67 58

    [15]

    Kulinich S A, Farhadi S, Nose K 2011 Langmuir 27 25

    [16]

    Varanasi K K, Deng T, Smith J D 2010 Appl. Phys. Lett. 97 234102

    [17]

    Tao W Q 2006 Heat Transfer (Xian: Northwestern Polytechnical University Press) (in Chinese) [陶文铨 2006 传热学(西安: 西北工业大学出版社)]

  • [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Bi F F, Guo Y L, Shen S Q, Chen J X, Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈盛强, 陈觉先, 李熠桥 2012 物理学报 61 184702]

    [3]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702

    [4]

    Okoroafor E U, Newborough M 2000 Appl. Therm. Eng. 20 737

    [5]

    Laforte J L, Allaire M A, Laflamme J 1998 Atmos. Res. 46 143

    [6]

    Hochart C, Fortin G, Perron J 2008 Wind Energy J. 11 319

    [7]

    Zou M, Beckford S, Wei R 2011 Appl. Surf. Sci. 257 3786

    [8]

    Zhou L, Xu H J, Long S K 2010 China Safety Science Journal 20 105 (in Chinese) [周莉, 徐浩军, 龚胜科 2010 中国安全科学学报 20 105]

    [9]

    Hu H, Jin Z Y 2010 Int. J. Multiphas. Flow 36 672

    [10]

    Wang J T, Liu Z L, Gou Y J 2006 Sci. China Ser. E 49 590

    [11]

    Hoke J L 2000 Ph. D. Dissertation (USA Illinois: University of Illinois)

    [12]

    Huang L Y, Liu Z L, Liu Y M 2010 J. Eng. Thermophys.-Rus 31 647 (in Chinese) [黄玲艳, 刘中良, 刘耀民 2010 工程热物理学报 31 647]

    [13]

    Zhu W Y 2007 M. S. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [朱卫英 2007 硕士学位论文(大连: 大连理工大学)]

    [14]

    Antonini C, Innocenti M, Horn T 2011 Cold Reg. Sci. Technol. 67 58

    [15]

    Kulinich S A, Farhadi S, Nose K 2011 Langmuir 27 25

    [16]

    Varanasi K K, Deng T, Smith J D 2010 Appl. Phys. Lett. 97 234102

    [17]

    Tao W Q 2006 Heat Transfer (Xian: Northwestern Polytechnical University Press) (in Chinese) [陶文铨 2006 传热学(西安: 西北工业大学出版社)]

计量
  • 文章访问数:  5946
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-18
  • 修回日期:  2016-02-02
  • 刊出日期:  2016-05-05

/

返回文章
返回