搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析

赵浙明 吴波 刘雅洁 江岭 密楠 王训四 刘自军 刘硕 潘章豪 聂秋华 戴世勋

引用本文:
Citation:

低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析

赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋

Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber

Zhao Zhe-Ming, Wu Bo, Liu Ya-Jie, Jiang Ling, Mi Nan, Wang Xun-Si, Liu Zi-Jun, Liu Shuo, Pan Zhang-Hao, Nie Qiu-Hua, Dai Shi-Xun
PDF
导出引用
  • 中、远红外光学领域的发展, 离不开低损耗光波导材料的发展, 因此近年来远红外低损耗光纤一直是光学领域的热点之一. 本论文在国内首次报道了一种基于挤压法的低损耗远红外光纤制备技术, 获得了具有完整结构的远红外光纤, 其损耗为: 0.46 dB/m @8.7 m, 1.31 dB/m@10.6 m, 整体低于1 dB/m@7.2-10.3 m. 在实验过程中, 首先采用传统的熔融淬冷法和蒸馏纯化工艺制备了Ge-As-Se-Te玻璃样品. 利用X射线衍射仪和热膨胀仪等测试了玻璃的结构和物理性质, 分析了Ge对玻璃热学性质的影响; 利用分光光度计、红外光谱仪等研究了玻璃的光谱性质; 综合比较了还原剂铝、镁的除氧效果. 最后采用挤压法制备了芯包结构光纤. 实验结果表明: 镁的除氧效果佳, 新型挤压制备工艺和有效提纯技术共同推进了硫系光纤损耗的降低, 所获得的 Ge-As-Se-Te光纤具有远红外广谱应用的潜能(其透光波长接近12 m).
    With the development of infrared optics, low-loss waveguide materials are required. Especially, low-loss optical fiber development for far-infrared application has become a focus. Chalcogenide Ge-As-Se-Te(GAST) glasses and fibers for far-infrared light are prepared and investigated in this paper. The thermal properties and the infrared transmissions are reported. The influences of oxygen and hydrogen on the glass transmission and fiber attenuation are discussed. Low-loss GAST fiber with a structure of fine core/cladding is reported by a novel extrusion method (0.46 dB/m at 8.7 m, 1.31 dB/m at 10.6 m, base loss being under 1 dB/m from 7.2 to 10.3 m). Here, the glasses are prepared by traditional vacuum melt-quenching and vapor distillation method. Structure and physical properties of GAST glass system are studied with X ray diffractions and thermal expansion instrument. Optical spectra of GAST glass system are obtained by spectrophotometer and infrared spectrometer. Main purification processes with different oxygen-getters (magnesium and aluminum) are disclosed. The fiber attenuation is measured by the cut-back method with an Fourier transform infrared spectroscopy spectrometer. The lowest loss of this fiber can be reduced to 1.32 dB/m at 10.6 m, as it has a structure of Ge20As20Se15Te45 core and Ge20As20Se17Te43 cladding. The results show that these glasses are well transparent in a wide infrared window from 1.1 to 22 m, and these glass fibers can transmit far-infrared light up to 12 m, thus the GAST glass system is one of good candidates for far-infrared transparent materials. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These fibers are suited for the power delivery of CO2 laser.
      通信作者: 王训四, wangxunsi@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61377099, 61177087, 61307060)、浙江省重中之重学科开放基金(批准号: xkxl1508, xkxl1318)、教育部新世纪优秀人才支持计划(批准号: NCET-10-0976)、 浙江省151人才第三层次和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: Wang Xun-Si, wangxunsi@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377099, 61177087, 61307060), the Opened Key-Subject Construction Fund of Zhejiang Province, China (Grant Nos. xkxl1508, xkxl1318), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0976), the 151 Talents in Zhejiang Province, China, and the K. C. Wong Magna Fund of Ningbo University, China.
    [1]

    Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440

    [2]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [3]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 物理学报 60 351]

    [4]

    Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351

    [5]

    Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004

    [6]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586

    [7]

    Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77

    [8]

    Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148

    [9]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241

    [10]

    Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115

    [11]

    Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801

    [12]

    Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313

    [13]

    Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22

    [14]

    Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306

    [15]

    Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737

    [16]

    Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122

    [17]

    Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360

    [18]

    Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [19]

    Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455

  • [1]

    Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440

    [2]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [3]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 物理学报 60 351]

    [4]

    Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351

    [5]

    Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004

    [6]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586

    [7]

    Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77

    [8]

    Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148

    [9]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241

    [10]

    Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115

    [11]

    Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801

    [12]

    Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313

    [13]

    Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22

    [14]

    Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306

    [15]

    Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737

    [16]

    Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122

    [17]

    Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360

    [18]

    Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [19]

    Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455

计量
  • 文章访问数:  6012
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-18
  • 修回日期:  2016-03-03
  • 刊出日期:  2016-06-05

/

返回文章
返回