搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究

王党会 许天旱 宋海洋

引用本文:
Citation:

纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究

王党会, 许天旱, 宋海洋

Thermal expansion behaviors of epitaxial film for wurtzite GaN studied by using temperature-dependent Raman scattering

Wang Dang-Hui, Xu Tian-Han, Song Hai-Yang
PDF
导出引用
  • 文章对纤锌矿结构GaN外延层薄膜的热膨胀行为进行了研究, 结合热膨胀系数的物理意义与变温Raman散射时声子频移的变化规律, 研究了热膨胀系数与变温Raman散射之间的关系. 结果 表明: 通过测量Raman声子 E2 (high), A1 (TO)和E1 (TO)频移与温度之间的线性关系, 结合相应声子Gruneisen参数的涵义, 可对纤锌矿结构GaN外延层薄膜在一定温度范围内的热膨胀系数进行测量. 本文提供了一种表征纤锌矿结构GaN外延层薄膜热膨胀行为的有效方法, 为进一步研究III族氮化物外延层薄膜在生长过程中热膨胀系数的匹配、降低外延层薄膜中的位错密度并提高发光二极管的发光效率提供了理论依据.
    III-nitride materials have attracted considerable attention in the last decade due to their wide applications in solidstate light devices with their direct wide band-gaps and higher quantum efficiencies. InGaN/GaN multiple quantum well is important active region for light-emitting diode, which can be tuned according to indium composition in the InxGa1-xN alloy system. Owing to difficulty in fabricating bulk materials, GaN thin films are heteroepitaxially grown on latticemismatched and thermal-expansion-mismatched substrates, such as sapphire (Al2O3), Si and SiC, which subsequently results in a mass of threading dislocations and higher residual strains. On the one hand, dislocations and defects existing in GaN epifilms trap the carriers as scattering centers in the radiative recombination process between electrons and holes, and play an important role in drooping the internal quantum efficiency. On the other hand, higher built-in electric field induced by residual strains existing in GaN epifilm could make the emission wavelength red-shifted.It is common knowledge that temperature is one of the important factors in the growth process of epitaxial films, as a result, further research on thermal expansion behaviors is needed. Based on the above analysis, an in-depth study of thermal expansion behavior of wurtzite GaN epitaxial film is of vital importance both in theory and in application.In this study, we investigate the thermal expansion behaviors of wurtzite GaN epitaxial films by using temperaturedependent Raman scattering in a temperature range from 83 K to 503 K. According to the physical implication, Gruneisen parameter is almost a constant (Gruneisen parameters of all phonon modes are in a range between 1 to 2 for GaN) that characterizes the relationship between the phonon shift and the volume of a solid-state material. More importantly, Gruneisen parameter is relatively insensitive to temperature and suitable for building the connection between the phonon shift and thermal expansion coefficient. Therefore, the linear relationship between the phonon shift and temperature is built and utilized to calculate the thermal expansion coefficient according to the physical implication of the Gruneisen parameter. Conclusions can be obtained as follows. (1) The thermal expansion coefficient of GaN epifilm can be calculated in a certain temperature range by measuring the phonon modes of E2 (high), A1 (TO) and E1 (TO) through using temperature-dependent Raman scattering when the corresponding Gruneisen parameters are determined. (2) The calculated thermal expansion coefficients of GaN epifilm are consistent with the theoretical values.Conclusions and methods in this paper provide an effective quantitative analysis method to characterize the thermal expansion behaviors of other III-nitride epitaxial thin films, such as AlN, InN, AlGaN, InGaN, InAlN etc., which can be of benefit to reducing the dislocation density and improving the luminescence efficiency of light emitting diode. Therefore, research on thermal expansion behaviors of epifilms using temperature-dependent Raman scattering has a direction for further studying the latter-mismatch and thermal-expansion-mismatch between the epitaxial film and substrate.
      通信作者: 王党会, wdhyxp@163.com
    • 基金项目: 陕西省自然科学基础研究项目(批准号: 2015JM6327)、西安石油大学博士科研启动基金(批准号: Z14086)和西安石油大学材料加工工程重点学科(批准号: YS32030203)资助的课题.
      Corresponding author: Wang Dang-Hui, wdhyxp@163.com
    • Funds: Project supported by National Science Foundation of Shaanxi Province, China (Grant No. 2015JM6327), Youth Science and Technology Innovation Fund of Xian ShiYou University, China (Grant No. Z14086), and Key Subject of Materials Processing Engineering of Shaanxi Province, China (Grant No. YS32030203).
    [1]

    Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851

    [2]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [3]

    Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457

    [4]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [5]

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701]

    [6]

    Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311

    [7]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [8]

    Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314

    [9]

    Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125

    [10]

    Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103

    [11]

    Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905

    [12]

    Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51

    [13]

    Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009

    [14]

    Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761

    [15]

    Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162

    [16]

    Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51

    [17]

    James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101

    [18]

    Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83

    [19]

    Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516

    [20]

    Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936

    [21]

    Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

  • [1]

    Akasaki I, Amano H, Itoh K, Koide N, Manabe K 1992 Int. Phys. Conf. Ser. 129 851

    [2]

    Amano H, Sawaki N, Akasaki I, Toyoda Y 1986 Appl. Phys. Lett. 48 353

    [3]

    Nakamura S, Mukai T 1992 Jpn J. Appl. Phys. 31 1457

    [4]

    Xu S R, Hao Y, Zhang J C, Jiang T, Yang L A, Lu X L, Lin Z Y 2013 Nano Lett. 13 3654

    [5]

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701 (in Chinese) [王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701]

    [6]

    Wang D H, Hao Y, Xu S R, Xu T H, Wang D C, Yao T Z, Zhang Y N 2013 J. Alloys Compd. 555 311

    [7]

    Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H, Gu W P 2009 J. Cryst. Growth 311 3622

    [8]

    Zhao Y, Zhang J C, Xue J S, Xu S R, Zhou X W, Hao Y 2014 Jpn. J. Appl. Phys. 53 110314

    [9]

    Liu M S, Bursill L, Prawer S, Nugent K W, Tong Y Z, Zhang G Y 1999 Appl. Phys. Lett. 74 3125

    [10]

    Dong Y Q, Song J H, Kim H J, Kim T S, Ahn B J, Song J H, Cho I S, Im W T, Moon Y, Hwang S M, Hong S K, Lee S W 2011 J. Appl. Phys. 109 43103

    [11]

    Lazić S, Moreno M, Calleja J M, Trampert A, Ploog K H, Naranjo F B, Fernandez S, Calleja E 2005 Appl. Phys. Lett. 86 61905

    [12]

    Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M, Weyers M 2008 J. Mater. Sci.: Mater. Electron. 19 51

    [13]

    Yan Q, Rinke P, Scheffler M, van de Walle G 2009 Appl. Phys. Lett. 95 2009

    [14]

    Correia M R, Pereira S, Pereira E, Frandon J, Alves E 2003 Appl. Phys. Lett. 83 4761

    [15]

    Giehler M, Ramsteiner M, Waltereit P, Brandt O Plooga K H, Oblohb H 2002 Physica B: Condens Matter 316-317 162

    [16]

    Gmez-Gmez M I, Garca A, de Lima M M, Daudin B, Rizzi A, Denker C, Malindretos J 2011 Ann. Phys. 523 51

    [17]

    James P, Bernard B 2010 Solid-State Physics: Introduction to the Theory (Berlin Heidelberg:Springer-Verlag) p101

    [18]

    Sadao A 2005 Properties of Group-IV, III-V and II-VI Semiconductors (New York: John Wiley Sons Ltd) p83

    [19]

    Song S H, Jiles D C, Snyde J E, et al. 2005 J. Appl.Phys. 97 10M516

    [20]

    Gorczyca I, Christensen N E, Peltzer E L, Rodriguez C O 1995 Phys. Rev. B 51 11936

    [21]

    Li W S, Shen Z X, Feng Z C, Chua S J 2000 J. Appl. Phys. 87 3332

  • [1] 熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁. 面向宽温域功能器件的连续组分外延铁电薄膜. 物理学报, 2023, 72(9): 097701. doi: 10.7498/aps.72.20230154
    [2] 刘曰利, 赵思杰, 陈文, 周静. SiO2/聚四氟乙烯复合介质材料热性能和介电性能的数值模拟. 物理学报, 2022, 71(21): 210201. doi: 10.7498/aps.71.20220839
    [3] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为. 物理学报, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [4] 蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强. 混合型碘系钙钛矿薄膜变温光致发光特性的研究. 物理学报, 2019, 68(24): 246801. doi: 10.7498/aps.68.20191238
    [5] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [6] 黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益. 硅基板和铜基板垂直结构GaN基LED变温变电流发光性能的研究. 物理学报, 2014, 63(21): 217806. doi: 10.7498/aps.63.217806
    [7] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [8] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [9] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究. 物理学报, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [10] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究. 物理学报, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [11] 隋成华, 蔡萍根, 陈乃波, 魏高尧, 许晓军, 周红. 蓝宝石光纤端面上ZnO薄膜的制备及其温变光学特性. 物理学报, 2009, 58(4): 2792-2796. doi: 10.7498/aps.58.2792
    [12] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级. 物理学报, 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [13] 王瑞敏, 陈光德, 竹有章. 六方相InGaN外延膜的显微Raman散射. 物理学报, 2006, 55(2): 914-919. doi: 10.7498/aps.55.914
    [14] 王庆学, 杨建荣, 孙 涛, 魏彦锋, 方维政, 何 力. Hg1-xCdxTe分子束外延薄膜晶格参数与组分关系的研究. 物理学报, 2005, 54(8): 3726-3733. doi: 10.7498/aps.54.3726
    [15] 邹 军, 张连翰, 周圣明, 徐 军, 韩 平, 张 荣. γ-LiAlO2晶体生长、改性和热学性质研究. 物理学报, 2005, 54(9): 4269-4272. doi: 10.7498/aps.54.4269
    [16] 岳兰平, 何怡贞. 纳米Ge颗粒镶嵌薄膜的Raman散射光谱研究. 物理学报, 1996, 45(10): 1756-1761. doi: 10.7498/aps.45.1756
    [17] 严祖同, 孙振华. Anderson-Grüneisen参数、热膨胀系数与压强的普遍关系. 物理学报, 1989, 38(10): 1634-1641. doi: 10.7498/aps.38.1634
    [18] 阮耀钟, 李立平, 胡学龙, 彭定坤, 胡俊宝, 张裕恒. 正交和四方YBa2Cu3O7-x的热膨胀系数. 物理学报, 1988, 37(12): 2034-2037. doi: 10.7498/aps.37.2034
    [19] 阮耀钟, 李立平, 吴志强, 何平笙. PTS单晶的低温热膨胀系数. 物理学报, 1987, 36(9): 1219-1223. doi: 10.7498/aps.36.1219
    [20] 高占鹏. 膨胀系数、体模量、Grüneisen系数与温度关系. 物理学报, 1981, 30(5): 679-685. doi: 10.7498/aps.30.679
计量
  • 文章访问数:  4596
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-22
  • 修回日期:  2016-04-01
  • 刊出日期:  2016-07-05

/

返回文章
返回