搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于移位双光栅色散元件的X射线谱仪研制

易涛 王传珂 杨进文 朱效立 谢常青 刘慎业

引用本文:
Citation:

基于移位双光栅色散元件的X射线谱仪研制

易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业

Investigation into the design and diffraction efficiency of shifted dual transmission grating

Yi Tao, Wang Chuan-Ke, Yang Jin-Wen, Zhu Xiao-Li, Xie Chang-Qing, Liu Shen-Ye
PDF
导出引用
  • 本文针对激光等离子体X射线诊断的需求,设计开发了移位双光栅X射线谱仪. 该谱仪采用高线对密度和低线对密度的两种光栅组成移位双光栅作为核心衍射组件,高密度光栅能够提高中、高能区(1000-5000 eV)的能谱分辨率,低密度光栅足够满足低能区(100-1000 eV)测量的能谱分辨率要求,控制了低能区谱线的分布空间,保证足够的测量范围. 两种光栅相互配合实现了谱仪整体性能提升. 本文提出了移位双光栅X射线谱仪结构设计方法和参数指标,完成了移位双光栅X射线谱仪的集成调试和实验应用,获得了时间分辨的X光谱实验数据,测谱范围0.1-5.0 keV,谱分辨0.04 nm,时间分辨好于30 ps. 移位双光栅X射线谱仪可以最大程度地利用记录面的长度,实现高时间分辨和宽谱X射线测量.
    In inertial confined fusion (ICF) experiments, the temporal evolution of X-ray spectrum can provide important diagnostic information such as electron temperature and density on laser-plasma interaction. Accurate diagnostic requires a wide range of X-ray spectrum from several hundred eV to kilo eV to be measured with high temporal resolution. For traditional single grating spectrometer coupled with streak cameras, the limited recording length of streak cameras severely restricts measured X-ray spectral range in one laser shot. Here we design a shifted dual transmission grating (SDTG) spectrometer for laser-produced plasma X-ray diagnostics in ICF experiments which can provide wide-range X-ray spectrum measurement from 100 eV to 5 keV with high temporal and spectral resolution. This SDTG spectrometer comprises two X-ray gratings: one with high line density and the other with low line density. The high line density grating is used to measure X-ray spectrum from 1000 eV to 5000 eV and the low line density grating measures X-ray spectrum from 100 eV to 1000 eV respectively. These two kinds of X-ray gratings are arranged in a plane with their centers shifted by a certain distance. A shifted double slit component is designed according to the spatial positions of the two gratings and set in front of the photocathode in the streak camera to ensure that two sets of X-ray spectra by two shifted gratings are projected on the photocathode without overlapping. This novel SDTG-based X-ray spectrometer can take the most of recording panel space, offering a path to realize a high resolution and broad spectral ranges in diagnosing soft X-rays. In this paper, the design method and the technical data of the SDTG-based X-ray spectrometer are given. The SDTG-based X-ray spectrometer is integrated, debugged and used to measure X-ray pulse at SG-III prototype facility located in Laser Fusion Research Center of Chinese Academy of Engineering Physics. The time integral results are captured by the SDTG spectrometer in the ICF fluid RT experiments and time-resolved spectra are recorded in indirect drive implosion experiment. Experimental results show the SDTG-based X-ray spectrometer can capture X-ray spectrum ranging from 0.1 keV to 5 keV, with a spectral resolution of 0.04 nm and a temporal resolution of better than 30 ps. By fully utilizing limited recording length, the SDTG-based X-ray spectrometer can realize a wide range temporal X-ray spectrum measurement with enough spectral resolution and temporal resolution. This SDTG spectrometer is a good temporal X-ray diagnostic tool for ICF experiments and other high energy density physics experiments.
      通信作者: 王传珂, wck1981@caep.cn
    • 基金项目: 国家自然科学基金(批准号:11405158,11435011)和核废物与环境安全国防重点学科实验室开放基金(批准号:13zxnk06)资助的课题.
      Corresponding author: Wang Chuan-Ke, wck1981@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11405158, 11435011) and the Open Fund of Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, China (Grant No. 13zxnk06).
    [1]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969

    [2]

    Yang J M, Ding Y N, Zhang W H, Zhang J Y, Zheng Z J 2003 Rev. Sci. Instrum. 74 4268

    [3]

    Kumar D, Clayton D J, Parman M, Stutman D, Tritz K 2012 Rev. Sci. Instrum. 83 10E511

    [4]

    Wang B Q, Wang C K, Yi T, Li T S, Li J, Zhu X L, Xie C Q, Liu S Y, Jiang S E, Ding Y K 2015 Acta Phot. Sin. 44 1030003 (in Chinese) [王保清, 王传珂, 易涛, 李廷帅, 李晋, 朱效立, 谢常青, 刘慎业, 江少恩, 丁永坤 2015 光子学报 44 1030003]

    [5]

    He K, Yi T, Liu S Y, Niu J B, Chen B Q, Zhu X L 2014 Micronanoelect. Technol. 51 381 (in Chinese) [何宽, 易涛, 刘慎业, 牛洁斌, 陈宝钦, 朱效立 2014 微纳电子技术 51 381]

    [6]

    Ma J, Xie C Q, Ye T C, Liu M 2010 Acta Phys. Sin. 59 2564 (in Chinese) [马杰, 谢常青, 叶甜春, 刘明 2010 物理学报 59 2564]

    [7]

    Kuang L, Cao L, Zhu X, Wu S, Wang Z, Wang C, Liu S, Jiang S, Ding Y, Xie C, Zheng J 2011 J. Opt. Lett. 36 3954

    [8]

    Wang C K, Wang B Q, Yi T, Fan Q P, Kuang L Y, Li J, Li T S, Zhu X L, Liu S Y, Jiang G 2016 J. Mod. Opt. 63 261

    [9]

    Wang B Q, Yi T, Wang C K, Zhu X L, Li T S, Li J, Liu S Y, Jiang S E, Ding Y K 2016 Plasma Sci. Technol. 18 781

  • [1]

    Eagleton R T, James S F 2004 Rev. Sci. Instrum. 75 3969

    [2]

    Yang J M, Ding Y N, Zhang W H, Zhang J Y, Zheng Z J 2003 Rev. Sci. Instrum. 74 4268

    [3]

    Kumar D, Clayton D J, Parman M, Stutman D, Tritz K 2012 Rev. Sci. Instrum. 83 10E511

    [4]

    Wang B Q, Wang C K, Yi T, Li T S, Li J, Zhu X L, Xie C Q, Liu S Y, Jiang S E, Ding Y K 2015 Acta Phot. Sin. 44 1030003 (in Chinese) [王保清, 王传珂, 易涛, 李廷帅, 李晋, 朱效立, 谢常青, 刘慎业, 江少恩, 丁永坤 2015 光子学报 44 1030003]

    [5]

    He K, Yi T, Liu S Y, Niu J B, Chen B Q, Zhu X L 2014 Micronanoelect. Technol. 51 381 (in Chinese) [何宽, 易涛, 刘慎业, 牛洁斌, 陈宝钦, 朱效立 2014 微纳电子技术 51 381]

    [6]

    Ma J, Xie C Q, Ye T C, Liu M 2010 Acta Phys. Sin. 59 2564 (in Chinese) [马杰, 谢常青, 叶甜春, 刘明 2010 物理学报 59 2564]

    [7]

    Kuang L, Cao L, Zhu X, Wu S, Wang Z, Wang C, Liu S, Jiang S, Ding Y, Xie C, Zheng J 2011 J. Opt. Lett. 36 3954

    [8]

    Wang C K, Wang B Q, Yi T, Fan Q P, Kuang L Y, Li J, Li T S, Zhu X L, Liu S Y, Jiang G 2016 J. Mod. Opt. 63 261

    [9]

    Wang B Q, Yi T, Wang C K, Zhu X L, Li T S, Li J, Liu S Y, Jiang S E, Ding Y K 2016 Plasma Sci. Technol. 18 781

  • [1] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [2] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [3] 王健, 侯鹏程, 张彬. 基于复合型光栅的光谱色散匀滑新方案. 物理学报, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [4] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [5] 李宝, 杜炳政, 朱京平. Bragg反射齿型平面凹面衍射光栅性能研究. 物理学报, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [6] 李宝, 朱京平, 杜炳政. 基于Bragg反射面结构的衍射光栅设计与研究. 物理学报, 2014, 63(19): 194209. doi: 10.7498/aps.63.194209
    [7] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [8] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [9] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [10] 周小为, 刘颖, 徐向东, 邱克强, 刘正坤, 洪义麟, 付绍军. 大口径多层介质膜光栅衍射效率测量及其在制作工艺中的应用. 物理学报, 2012, 61(17): 174203. doi: 10.7498/aps.61.174203
    [11] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [12] 尚万里, 杨家敏, 赵阳, 朱托, 熊刚. 透射光栅衍射效率的通用模型. 物理学报, 2011, 60(9): 094212. doi: 10.7498/aps.60.094212
    [13] 尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕. 透射光栅的实验标定和衍射效率的理论模拟. 物理学报, 2011, 60(3): 034216. doi: 10.7498/aps.60.034216
    [14] 孔伟金, 王书浩, 魏世杰, 云茂金, 张文飞, 王心洁, 张蒙蒙. 基于严格耦合波理论的宽光谱金属介质膜光栅衍射特性分析. 物理学报, 2011, 60(11): 114214. doi: 10.7498/aps.60.114214
    [15] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 陈珂, 成建群, 肖勇, 唐道广, 黄明举. 丙烯酰胺基光致聚合物全息光栅的动力学研究. 物理学报, 2009, 58(2): 1007-1013. doi: 10.7498/aps.58.1007
    [18] 朱伟忠, 吴衍青, 郭 智, 朱效立, 马 杰, 谢常青, 史沛熊, 周洪军, 霍同林, 邰仁忠, 徐洪杰. 大面积10000线/毫米软X射线金属型透射光栅的设计、制作与检测. 物理学报, 2008, 57(10): 6386-6392. doi: 10.7498/aps.57.6386
    [19] 孔伟金, 云茂金, 孙 欣, 刘均海, 范正修, 邵建达. 基于严格耦合波理论的多层介质膜光栅衍射特性分析. 物理学报, 2008, 57(8): 4904-4910. doi: 10.7498/aps.57.4904
    [20] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
计量
  • 文章访问数:  4917
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-06-07
  • 刊出日期:  2016-08-05

/

返回文章
返回