搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凝聚相材料分子解离动力学的飞秒瞬态光栅光谱研究

吴红琳 宋云飞 王阳 于国洋 杨延强

引用本文:
Citation:

凝聚相材料分子解离动力学的飞秒瞬态光栅光谱研究

吴红琳, 宋云飞, 王阳, 于国洋, 杨延强

Photodissociation dynamics of organic molecules in condensed phase by femtosecond transient grating spectroscopy

Wu Hong-Lin, Song Yun-Fei, Wang Yang, Yu Guo-Yang, Yang Yan-Qiang
PDF
导出引用
  • 凝聚相条件下,受分子间相互作用的影响,分子的解离机理通常不同于孤立分子.如何在凝聚相材料中有效地监测分子反应的进程和产物是目前急需解决的一个技术难题.本文介绍了飞秒瞬态光栅光谱技术在凝聚相材料解离动力学研究中的应用.作为相干光谱技术的一种,瞬态光栅光谱的信号强度高、无背底,因此能够有效地鉴别体系中的微量反应产物.通过对碘甲烷、硝基甲烷等模型体系的研究,验证了瞬态光栅技术不仅能够在时域上给出电子态的弛豫信息,还能够在光谱上同时监测反应物和产物以及分子或基团的振动.凝聚相条件下的解离动力学研究对于了解生化、爆炸等反应的机理有非常重要的意义,因此飞秒瞬态光栅技术在这方面具有广阔的应用空间.此外,作为一种非接触的诊断技术,瞬态光栅很容易和高温、高压等条件结合,因此瞬态光栅技术在研究材料的相变动力学、高压合成等方面也具有潜在的应用价值.
    In condensed phase, the dissociation mechanism of molecule is different from that of isolated molecule due to the effect of interaction between molecules. How to effectively trace the reaction process and products in condensed phase is a technical problem which needs to be solved urgently. In this paper, femtosecond transient grating spectroscopy is used to investigate dissociation dynamics in condensed phase. Transient grating spectroscopy, as a coherent spectral technique, has some advantages such as high signal-noise ratio and free background, thus it can identify trace numbers of reaction products in dissociation. The investigation about model molecules such as iodomethane and nitromethane demonstrates that the transient grating technique can observe relaxation in electronic excited state and also has ability to track reactants, products, and vibration of molecule or perssad. The dissociation dynamics in condensed phase material is significant for understanding the reaction mechanism in the fields of biochemistry and detonation. Thus the femtosecond transient grating has a wide application prospect in these fields. In addition, the transient grating technique, as a non-contact diagnostic approach, can be easily adapted to high temperature and high pressure conditions, etc. Thus, the transient grating technique also has a potential value in the fields of phase transform dynamics and high pressure synthesis, etc.
      通信作者: 于国洋, yuguoyang@caep.cn;yqyang@caep.cn ; 杨延强, yuguoyang@caep.cn;yqyang@caep.cn
    • 基金项目: 国家自然科学基金(批准号:21673211,11404307,11304058)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号:U1330106)和国防基础科研与核科学挑战计划(批准号:JCKY2016212A501)资助的课题.
      Corresponding author: Yu Guo-Yang, yuguoyang@caep.cn;yqyang@caep.cn ; Yang Yan-Qiang, yuguoyang@caep.cn;yqyang@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673211, 11404307, 11304058), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1330106), and the National Defense Basic Scientific Research and Nuclear Science Challenging Program of China (Grant No. JCKY2016212A501).
    [1]

    Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395

    [2]

    Zewail A H 1980 Phys. Today 11 27

    [3]

    Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299

    [4]

    Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593

    [5]

    Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261

    [6]

    Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367

    [7]

    Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932

    [8]

    Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368

    [9]

    Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273

    [10]

    Crim F F 2011 Nat. Chem. 3 344

    [11]

    Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423

    [12]

    Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12

    [13]

    Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126

    [14]

    Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101

    [15]

    Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152

    [16]

    Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240

    [17]

    Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85

    [18]

    Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310

    [19]

    Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385

    [20]

    McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971

  • [1]

    Dantus M, Rosker M J, Zewail A H 1987 J. Chem. Phys. 87 2395

    [2]

    Zewail A H 1980 Phys. Today 11 27

    [3]

    Materny A, Chen T, Schmitt M, Siebert T, Vierheilig A, Engel V, Kiefer W 2000 Appl. Phys. B 71 299

    [4]

    Torralva B R, Allen R E 2002 J. Mod. Opt. 49 593

    [5]

    Gruebele M, Wolynes P G 2004 Acc. Chem. Res. 37 261

    [6]

    Xu S C, Lin M C 2005 J. Phys. Chem. B 109 8367

    [7]

    Hause M L, Herath N, Zhu R S, Lin M C, Suits A G 2011 Nat. Chem. 3 932

    [8]

    Schweihgofer F, Dworak L, Braun M, Zastrow M, Wahl J, Burghardt I, Braun K R, Wachtveitl J 2015 Sci. Rep. 5 9368

    [9]

    Elles C G, Grim F F 2006 Annu. Rev. Phys. Chem. 57 273

    [10]

    Crim F F 2011 Nat. Chem. 3 344

    [11]

    Greaves S J, Rose R A, Oliver T A A, Glowacki D R, Ashfold M N R, Harvey J N, Clark I P, Greetham G M, Parker A W, Towrie M, Orr-Eving A J 2011 Science 331 1423

    [12]

    Jiang L L, Liu W L, Song Y F, He X, Wang Y, Wang C, Wu H L, Yang F, Yang Y Q 2014 Chem. Phys. 429 12

    [13]

    Wang Y, Song Y F, Liu W L, Liu Y Q, Duo L P, Jiang L L, Yang Y Q 2015 Chem. Phys. Lett. 633 126

    [14]

    Wang Y, Liu W L, Song Y F, Liu Y Q, Duo L P, Jiang L L, Yu G Y, Yang Y Q 2015 J. Chem. Phys. 143 051101

    [15]

    Wu H L, Song Y F, Yu G Y, Wang Y, Wang C, Yang Y Q 2016 Chem. Phys. Lett. 652 152

    [16]

    Zeng Y Y, Song Y F, Yu G Y, Zheng X X, Guo W C, Zhao J, Yang Y Q 2016 J. Mol. Struct. 1119 240

    [17]

    Guo Y Q, Bhattacharya A, Bernstein E R 2009 J. Phys. Chem. A 113 85

    [18]

    Lin M F, Lee Y T, Ni C K, Xu S C, Lin M C 2007 J. Chem. Phys. 126 064310

    [19]

    Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385

    [20]

    McCamant D W, Kukura P, Yoon S, Mathies R A 2004 Rev. Sci. Instrum. 75 4971

  • [1] 沈环, 华林强, 魏政荣. 尿嘧啶激发态动力学溶剂效应的飞秒瞬态吸收光谱研究. 物理学报, 2022, 71(18): 184206. doi: 10.7498/aps.71.20220515
    [2] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [3] 吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋. 三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究. 物理学报, 2019, 68(6): 063102. doi: 10.7498/aps.68.20182121
    [4] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [5] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱. 物理学报, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [6] 张力, 陈朗. 固相硝基甲烷相变的第一性原理计算. 物理学报, 2014, 63(9): 098105. doi: 10.7498/aps.63.098105
    [7] 张力, 陈朗. 高压下固相硝基甲烷分解的分子动力学计算. 物理学报, 2013, 62(13): 138201. doi: 10.7498/aps.62.138201
    [8] 刘天元, 孙成林, 里佐威, 周密. Raman光谱方法研究三氯甲烷与苯分子间的 C/H相互作用. 物理学报, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [9] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究. 物理学报, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [10] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [11] 朱志艳, 朱正和, 张莉, 李培刚, 唐为华, 郑莹莹. T+OD体系的同位素交换反应动力学. 物理学报, 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [12] 冯兴, 朱正和, 刘晓亚, 杨向东, 黄玮. SiH2体系的分子反应动力学. 物理学报, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [13] 徐京城, 赵纪军. 液态硝基甲烷热分解行为及压力效应的第一性原理研究. 物理学报, 2009, 58(6): 4144-4149. doi: 10.7498/aps.58.4144
    [14] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解. 物理学报, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [15] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解. 物理学报, 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [16] 徐国亮, 朱正和, 马美仲, 谢安东. 甲烷在外场作用下的光激发特性研究. 物理学报, 2005, 54(7): 3087-3093. doi: 10.7498/aps.54.3087
    [17] 施德恒, 孙金锋, 杨向东, 朱遵略, 刘玉芳. 中高能电子被甲烷及氯代甲烷散射的总截面. 物理学报, 2005, 54(5): 2019-2024. doi: 10.7498/aps.54.2019
    [18] 罗德礼, 蒙大桥, 朱正和. LiH,LiO和LiOH的分析势能函数与分子反应动力学. 物理学报, 2003, 52(10): 2438-2442. doi: 10.7498/aps.52.2438
    [19] 薛卫东, 朱正和, 冉鸣, 王红艳, 邹乐西, 孙颖. U+CO体系的分子反应动力学研究. 物理学报, 2002, 51(11): 2503-2508. doi: 10.7498/aps.51.2503
    [20] 胡皆汉. 环偶氮甲烷型分子的振动均方振幅矩阵. 物理学报, 1965, 21(8): 1494-1499. doi: 10.7498/aps.21.1494
计量
  • 文章访问数:  5277
  • PDF下载量:  387
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-09
  • 修回日期:  2016-12-06
  • 刊出日期:  2017-02-05

/

返回文章
返回