搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响

封波 邓彪 刘乐功 李增成 冯美鑫 赵汉民 孙钱

引用本文:
Citation:

等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响

封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱

Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate

Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian
PDF
导出引用
  • 硅衬底GaN基发光二极管(LED)的内置n型欧姆接触在晶圆键合时的高温过程中常常退化,严重影响LED的工作电压等器件性能.本文深入研究了内置n电极蒸镀前对n-GaN表面的等离子体处理工艺对硅衬底GaN基发光二极管n型欧姆接触特性的影响.实验结果表明,1.1 mm1.1 mm的LED芯片在350 mA电流下,n-GaN表面未做等离子体处理时,n电极为高反射率Cr/Al的芯片正向电压为3.43 V,比n电极为Cr的芯片正向电压高0.28 V.n-GaN表面经O2等离子体表面处理后,Cr/Al和Cr电极芯片的正向电压均有所降低,但Cr/Al电极芯片的正向电压仍比Cr电极芯片高0.14 V.n-GaN表面经Ar等离子体处理后,Cr/Al电极芯片正向电压降至Cr电极芯片的正向电压,均为2.92 V.利用X射线光电子能谱对Ar等离子体处理前后的n-GaN表面进行分析发现,Ar等离子体处理增加了n-GaN表面的N空位(施主)浓度,更多的N空位可以提高n型欧姆接触的热稳定性,缓解晶圆键合的高温过程对n型欧姆接触特性的破坏.同时还发现,经过Ar等离子体处理并用HCl清洗后,n-GaN表面的O原子含量略有增加,但其存在形式由以介电材料GaOx为主转变为导电材料GaOxN1-x和介电材料GaOx含量相当的状态,这会使得接触电阻进一步降低.上述两方面的变化均有利于降低LED芯片的正向电压.
    Unlike the finger-like n-contact that is prepared after the wafer bonding and the N-polar GaN surface roughening for GaN-based vertical structure light-emitting diodes (LEDs) grown on Si substrates, the embedded via-like n-contact is formed prior to the wafer bonding. The high temperature process of the wafer bonding often causes the electrical characteristics of the via-like embedded n-contact to degrade. In this paper, we study in detail the effect of plasma treatment of the n-GaN surface on the forward voltage of GaN-based LED grown on Si substrate. It is shown that with no plasma treatment on the n-GaN surface, the forward voltage (at 350 mA) of the 1.1 mm1.1 mm chip with a highly reflective electrode of Cr (1.1 nm)/Al is 3.43 V, which is 0.28 V higher than that of the chip with a pure Cr-based electrode. The LED forward voltages for both kinds of n-contacts can be reduced by an O2 plasma treatment on the n-GaN surface. But the LED forward voltage with a Cr/Al-based electrode is still 0.14 V higher than that of the chips with a pure Cr-based electrode. However, after an Ar plasma treatment on the n-GaN surface, the LED forward voltage with a Cr/Al-based electrode is reduced to 2.92 V, which is equal to that of the chip with a pure Cr-based electrode. The process window of the n-GaN surface after the Ar plasma treatment is broader. X-ray photoelectron spectroscopy is used to help elucidate the mechanism. It is found that Ar plasma treatment can increase the concentration of N-vacancies (VN) at the n-GaN surface. VN acts as donors, and higher VN helps improve the thermal stability of n-contact because it alleviates the degradation of the n-contact characteristics caused by the high temperature wafer bonding process. It is also found that the O content increases slightly after the Ar plasma treatment and HCl cleaning. The O atoms are mainly present in the dielectric GaOx film before the Ar plasma treatment and the HCl cleaning, and they exist almost equivalently in the conductive GaOxN1-x film and the dielectric GaOx film after Ar treatment and HCl cleaning. The conductive GaOxN1-x film and the VN donors formed during the plasma treatment can reduce the contact resistance and the LED forward voltage.
      通信作者: 孙钱, qsun2011@sinano.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA03A102);国家重点研发计划(批准号:2016YFB0400104);国家自然科学基金(批准号:61534007,61404156,61522407,61604168);中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC014);江苏省自然科学基金(批准号:BK20160401);中国博士后基金(批准号:2016M591944);发光学及应用国家重点实验室开放课题(批准号:SKLA-2016-01);集成光电子学国家重点联合实验室开放课题(批准号:IOSKL2016KF04,IOSKL2016KF07)和中国科学院苏州纳米技术与纳米仿生研究所自有资金(批准号:Y5AAQ51001)资助的课题.
      Corresponding author: Sun Qian, qsun2011@sinano.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2015AA03A102),the National Key Research and Development Program of China (Grant No.2016YFB0400104),the National Natural Science Foundation of China (Grant Nos.61534007,61404156,61522407,61604168),the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (Grant No.QYZDB-SSW-JSC014),the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20160401),the China Postdoctoral Science Foundation (Grant No.2016M591944),the Open Fund of the State Key Laboratory of Luminescence and Applications,China (Grant No.SKLA-2016-01),the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Grant Nos.IOSKL2016KF04,IOSKL2016KF07),and the Seed Fund from SINANO,Chinese Academy of Sciences (Grant No.Y5AAQ51001).
    [1]

    Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys 32 L8

    [2]

    Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T 2010 J. Phys. D:Appl. Phys. 43 354002

    [3]

    Haerle V, Hahn B, Kaiser S, Weimar A, Bader S, Eberhard F, Plssl A, Eisert D 2004 Phys. Status Solidi(a) 201 2736

    [4]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [5]

    Chu C F, Cheng C C, Liu W H, Chu J Y, Fan F H, Cheng H C, Doan T, Tran C A 2010 P. IEEE 98 1197

    [6]

    Jeong H H, Sang Y L, Jeong Y K, Choi K K, Song J O, Lee Y H, Seong T Y 2010 Electrochem. Solid-State Lett. 13 H237

    [7]

    Lee S Y, Choi K K, Jeong H H, Kim E J, Son H K, Son S J, Song J O, Seong T Y 2011 Jpn. J. Appl. Phys. 50 2005

    [8]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Dev. 57 79

    [9]

    Hahn B, Galler B, Engl K 2014 Jpn. J. Appl. Phys. 53 100208

    [10]

    Han J, Le D, Jin B, Jeong H, Song J O, Seong T Y 2015 Mat. Sci. Semicon. Pro. 31 153

    [11]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surf. Sci. 383 324

    [12]

    Song J O, Kwak J S, ParkY J, Seong T Y 2005 Appl. Phys. Lett. 86 062104

    [13]

    Son J H, Song Y H, Yu H K, Lee J L 2009 Appl. Phys. Lett. 35 062108

    [14]

    Leung B, Han J, Sun Q 2014 Phys. Status Solidi (c) 11 437

    [15]

    Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M, Yang H 2016 J. Semicond. 32 044006

    [16]

    Sun Y, Zhou K, Sun Q, Liu J P, Feng M X, Li Z C, Zhou Y, Zhang L Q, Li D Y, Zhang S M, Ikeda M, Liu S, Yang H 2016 Nature Photon. 158 1

    [17]

    Luther B P, Mohney S E, Jackson T N, Khan M A, Chen Q, Yang J W 1997 Appl. Phys. Lett. 70 57

    [18]

    Kim H, Park N M, Jang J S, Park S J, Hwang H 2001 Electrochem. Solid-State Lett. 4 G104

    [19]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 192106

    [20]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [21]

    Kim S J, Nam T Y, Kim T G 2011 IEEE Electr. Device L. 32 149

    [22]

    Jeong T, Kim S W, Lee S H, Ju J W, Lee S J, Baek J H, Lee J K 2011 J. Electrochem. Soc. 158 H908

  • [1]

    Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys 32 L8

    [2]

    Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T 2010 J. Phys. D:Appl. Phys. 43 354002

    [3]

    Haerle V, Hahn B, Kaiser S, Weimar A, Bader S, Eberhard F, Plssl A, Eisert D 2004 Phys. Status Solidi(a) 201 2736

    [4]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [5]

    Chu C F, Cheng C C, Liu W H, Chu J Y, Fan F H, Cheng H C, Doan T, Tran C A 2010 P. IEEE 98 1197

    [6]

    Jeong H H, Sang Y L, Jeong Y K, Choi K K, Song J O, Lee Y H, Seong T Y 2010 Electrochem. Solid-State Lett. 13 H237

    [7]

    Lee S Y, Choi K K, Jeong H H, Kim E J, Son H K, Son S J, Song J O, Seong T Y 2011 Jpn. J. Appl. Phys. 50 2005

    [8]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Dev. 57 79

    [9]

    Hahn B, Galler B, Engl K 2014 Jpn. J. Appl. Phys. 53 100208

    [10]

    Han J, Le D, Jin B, Jeong H, Song J O, Seong T Y 2015 Mat. Sci. Semicon. Pro. 31 153

    [11]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surf. Sci. 383 324

    [12]

    Song J O, Kwak J S, ParkY J, Seong T Y 2005 Appl. Phys. Lett. 86 062104

    [13]

    Son J H, Song Y H, Yu H K, Lee J L 2009 Appl. Phys. Lett. 35 062108

    [14]

    Leung B, Han J, Sun Q 2014 Phys. Status Solidi (c) 11 437

    [15]

    Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M, Yang H 2016 J. Semicond. 32 044006

    [16]

    Sun Y, Zhou K, Sun Q, Liu J P, Feng M X, Li Z C, Zhou Y, Zhang L Q, Li D Y, Zhang S M, Ikeda M, Liu S, Yang H 2016 Nature Photon. 158 1

    [17]

    Luther B P, Mohney S E, Jackson T N, Khan M A, Chen Q, Yang J W 1997 Appl. Phys. Lett. 70 57

    [18]

    Kim H, Park N M, Jang J S, Park S J, Hwang H 2001 Electrochem. Solid-State Lett. 4 G104

    [19]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 192106

    [20]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [21]

    Kim S J, Nam T Y, Kim T G 2011 IEEE Electr. Device L. 32 149

    [22]

    Jeong T, Kim S W, Lee S H, Ju J W, Lee S J, Baek J H, Lee J K 2011 J. Electrochem. Soc. 158 H908

计量
  • 文章访问数:  5920
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-02-05

/

返回文章
返回