搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bayer滤波型彩色相机调制传递函数测量方法

段亚轩 刘尚阔 陈永权 薛勋 赵建科 高立民

引用本文:
Citation:

Bayer滤波型彩色相机调制传递函数测量方法

段亚轩, 刘尚阔, 陈永权, 薛勋, 赵建科, 高立民

A method to measure the modulation transfer function of Bayer filter color camera

Duan Ya-Xuan, Liu Shang-Kuo, Chen Yong-Quan, Xue Xun, Zhao Jian-Ke, Gao Li-Min
PDF
导出引用
  • Bayer滤波型彩色相机广泛应用于航天遥感、空间对地观测、环境监测等领域.由于Bayer滤波片造成彩色相机相比黑白相机在像质方面进一步退化,如何对Bayer滤波型彩色相机成像性能全频段综合评价是目前亟待解决的问题.调制传递函数(MTF)是相机成像性能综合评价的关键指标,传统调制传递函数测量方法无法实现对Bayer滤波型彩色相机MTF全频段高精度测量.为了解决这个问题,本文提出了一种采用旋转刀口靶测量彩色相机调制传递函数的方法.理论方面,推导了Bayer滤波型彩色相机调制传递函数测量理论模型,仿真分析了刃函数采样率和刀口刃边倾斜角度误差对调制传递函数测量精度的影响,并给出了计算算法.实验方面,对彩色相机R,G,B三基色调制传递函数权重因子进行了实验定标,并搭建了基于条纹板和旋转刀口靶的彩色相机调制传递函数测量试验装置.采用旋转刀口靶法和条纹靶板法测量彩色相机MTF结果在耐奎斯特频率fc处极差为0.061,在空间频率fc/2处极差为0.043,试验结果验证了所提方法的有效性.
    With the development of optoelectronic technologies, color cameras have been widely exploited in space remote sensing, earth observations from space, environmental monitoring, urban construction, and many other fields. Currently, most commercial color cameras use a single charge coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) sensor that has a Bayer color filter array (CFA) on its pixel surface to obtain red (R), green (G), or blue (B) samples. As a way of evaluating imaging quality, modulation transfer function (MTF) can provide a comprehensive and objective metric for camera imaging performance. In the conventional knife-edge method for color camera MTF measurement, a linear uniform sampling of the edge spread function (ESF) must be completed before a fast Fourier transform (FFT) can be applied. As the sampling rate becomes large, the number of pixel points on the line which is parallel to the knife-edge become less. So taking average of the pixel points to obtain ESF can be strongly affected by the noise of sensor. Therefore it is necessary to balance the influences of sampling rate and sensor noise on the MTF measurement, and the recommended sampling rate is 4-6. When the tilt angle of knife-edge has an error, the non-uniform sampling ESF can be obtained by the slanted knife-edge method. This leads to a variation in the results of the camera MTF on a spatial frequency scale and early cut-off. The best MTF results of camera can be obtained by rotating knife-edge, calculating MTF power under different tilt angles of knife-edge, and finding the maximum MTF power. And we propose an algorithm for Bayer filter color camera MTF measurement. The algorithm processing includes extracting R, G, B colors of knife-edge images; projection; differential operation; Hanning window filtration; FFT; correction; weighting combination of R, G, B colors MTF; MTF power calculation; optimal tilt angle of knife-edge estimation. To verify the accuracy of the proposed method, the weighting response factors of R, G, B colors are calibrated and an experimental setup for color camera MTF measurement is established. The knife-edge target is rotated in angle steps of 0.02, and the MTF results are calculated under different tilt angles of knife-edge within0.1 surrounding the estimate position by the proposed algorithm. The maximum differences of MTF results between the proposed method and fringe target method are 0.061 (Nyquist frequency fc) and 0.043 (fc/2), respectively. The results show that by searching the optimal tilt angle of knife-edge, the effect of non-uniform sampling on MTF result of color camera can be eliminated. Compared with the conventional method, the proposed method is superior for the measurement of the super-sampled MTF of color camera. Meanwhile, this method can also be applied to MTF measurements of radiographic systems, such as X-ray imaging system and other systems.
      通信作者: 段亚轩, 6216366@163.com
    • 基金项目: 中国科学院仪器功能创新项目(批准号:Y32922123Z)资助的课题.
      Corresponding author: Duan Ya-Xuan, 6216366@163.com
    • Funds: Project supported by the program of Instrument Innovation of Chinese Academy of Sciences (Grant No. Y32922123Z).
    [1]

    Bryce E B 1975 US Patent 917065[1975-11-04]

    [2]

    Stephen K P, Robert S, Mary A K 1984 Appl. Opt. 23 2572

    [3]

    John C F, Mohammad A K 1990 Appl. Opt. 29 717

    [4]

    Huang J, Liang R S, Si T D, Zhang K M, Tang Z L 1998 Acta Phys. Sin. 47 1289 (in Chinese)[黄菁, 梁瑞生, 司徒达, 张坤明, 唐志列1998物理学报47 1289]

    [5]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese)[戚巽骏, 林斌, 曹向群, 陈钰清2008物理学报57 2854]

    [6]

    Xie X F, Wang H Y, Zhang W 2015 Opt. Commun. 354 202

    [7]

    Morishita J, Doi K, Bollen R, Bunch P C, Hoeschen D, Sirand R C, Sukenobu Y 1995 Med. Phys. 22 193

    [8]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 22446

    [9]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 H195

    [10]

    David Jr N S, James S G, Regina K F 1995 Appl. Opt. 34 746

    [11]

    Cunningham I A, Fenster A 1987 Med. Phys. 14 533

    [12]

    Tatsuya Y, Makoto N, Shinsuke H, Hitoshi I 2004 SPIE 5368 696

    [13]

    Hwang H, Choi Y W, Kwak S, Kim M, Park W 2008 Proc. SPIE 7109 710905

    [14]

    Francoise V R, Dominque L 2010 Opt. Express 18 3531

    [15]

    Kenichiro M, Takayuki Y, Yukihiro N, Masayuki S 2014 Opt. Express 22 6040

    [16]

    Boone J M, Seibert J A 1994 Med. Phys. 21 1541

    [17]

    Dobbins J T, Ergun D L, Rutz L, Hinshaw D A, Blume H, Clark D C 1995 Med. Phys. 22 1581

    [18]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Engng. 46 16403

    [19]

    Stephen K P, Zia-ur R 1999 Opt. Engng. 38 786

    [20]

    Greer P B, Doorn T V 2000 Med. Phys. 27 2048

    [21]

    Joseph W G (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp91-122(in Chinese)[顾德门著(秦可诚, 刘培森, 陈家璧, 曹其智译) 2011傅里叶光学导论(第三版) (北京:电子工业出版社)第91122页]

    [22]

    ISO Standard 122332000 Photography-Electronic Still Picture Cameras Resolution Measurements

    [23]

    Lomb N R 1976 Astrophys. Space Sci. 39 447

    [24]

    Albert M, Bedideck D J, Bakic P R, Maidment A D 1987 Med. Phys. 14 533

    [25]

    Rajeevramanat H, Wesleye S, Griffl B 2002 J. Electron. Imaging 11 306

    [26]

    Cok D R 1987 US Patent 642678[1987-02-10]

    [27]

    Laroche C A 1994 US Patent 373322[1994-12-13]

    [28]

    Hibbard R H 1995 US Patent 382976[1995-01-17]

    [29]

    Hamilton J F, Adams J E 1997 US Patent 629734[1997-05-13]

  • [1]

    Bryce E B 1975 US Patent 917065[1975-11-04]

    [2]

    Stephen K P, Robert S, Mary A K 1984 Appl. Opt. 23 2572

    [3]

    John C F, Mohammad A K 1990 Appl. Opt. 29 717

    [4]

    Huang J, Liang R S, Si T D, Zhang K M, Tang Z L 1998 Acta Phys. Sin. 47 1289 (in Chinese)[黄菁, 梁瑞生, 司徒达, 张坤明, 唐志列1998物理学报47 1289]

    [5]

    Qi X J, Lin B, Cao X Q, Chen Y Q 2008 Acta Phys. Sin. 57 2854 (in Chinese)[戚巽骏, 林斌, 曹向群, 陈钰清2008物理学报57 2854]

    [6]

    Xie X F, Wang H Y, Zhang W 2015 Opt. Commun. 354 202

    [7]

    Morishita J, Doi K, Bollen R, Bunch P C, Hoeschen D, Sirand R C, Sukenobu Y 1995 Med. Phys. 22 193

    [8]

    Zhou Z X, Gao F, Zhao H J, Zhang L X, Ren L Q, Li Z, Muhammad U G, Liu H 2014 Opt. Express 22 22446

    [9]

    Fang Y C, Tsay H L, Huang G Y 2014 Appl. Opt. 53 H195

    [10]

    David Jr N S, James S G, Regina K F 1995 Appl. Opt. 34 746

    [11]

    Cunningham I A, Fenster A 1987 Med. Phys. 14 533

    [12]

    Tatsuya Y, Makoto N, Shinsuke H, Hitoshi I 2004 SPIE 5368 696

    [13]

    Hwang H, Choi Y W, Kwak S, Kim M, Park W 2008 Proc. SPIE 7109 710905

    [14]

    Francoise V R, Dominque L 2010 Opt. Express 18 3531

    [15]

    Kenichiro M, Takayuki Y, Yukihiro N, Masayuki S 2014 Opt. Express 22 6040

    [16]

    Boone J M, Seibert J A 1994 Med. Phys. 21 1541

    [17]

    Dobbins J T, Ergun D L, Rutz L, Hinshaw D A, Blume H, Clark D C 1995 Med. Phys. 22 1581

    [18]

    Jeffrey T O, Richard L E, Eddie L J 2007 Opt. Engng. 46 16403

    [19]

    Stephen K P, Zia-ur R 1999 Opt. Engng. 38 786

    [20]

    Greer P B, Doorn T V 2000 Med. Phys. 27 2048

    [21]

    Joseph W G (translated by Qin K C, Liu P S, Chen J B, Cao Q Z) 2011 Introduction to Fourier Optics (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp91-122(in Chinese)[顾德门著(秦可诚, 刘培森, 陈家璧, 曹其智译) 2011傅里叶光学导论(第三版) (北京:电子工业出版社)第91122页]

    [22]

    ISO Standard 122332000 Photography-Electronic Still Picture Cameras Resolution Measurements

    [23]

    Lomb N R 1976 Astrophys. Space Sci. 39 447

    [24]

    Albert M, Bedideck D J, Bakic P R, Maidment A D 1987 Med. Phys. 14 533

    [25]

    Rajeevramanat H, Wesleye S, Griffl B 2002 J. Electron. Imaging 11 306

    [26]

    Cok D R 1987 US Patent 642678[1987-02-10]

    [27]

    Laroche C A 1994 US Patent 373322[1994-12-13]

    [28]

    Hibbard R H 1995 US Patent 382976[1995-01-17]

    [29]

    Hamilton J F, Adams J E 1997 US Patent 629734[1997-05-13]

  • [1] 吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江. 用于空间相机设计的高精度光线追迹方法. 物理学报, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [2] 陈法喜, 赵侃, 李立波, 郭宝龙. 基于激光波长跟踪的高精度光纤时间传递. 物理学报, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [3] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [4] 邓文娟, 朱斌, 王壮飞, 彭新村, 邹继军. 变掺杂变组分AlxGa1–xAs/GaAs反射式光电阴极分辨力特性. 物理学报, 2022, 71(15): 157901. doi: 10.7498/aps.71.20220244
    [5] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [6] 张美, 李奎念, 李阳, 盛亮, 张艳红. 一种新型的液闪阵列成像屏空间分辨特性. 物理学报, 2020, 69(6): 062801. doi: 10.7498/aps.69.20191545
    [7] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [8] 郝未倩, 梁忠诚, 刘肖尧, 赵瑞, 孔梅梅, 关建飞, 张月. 分形结构稀疏孔径阵列的成像性能. 物理学报, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [9] 郑鑫, 武鹏飞, 饶瑞中. 天光背景下混浊大气中成像质量的分析方法. 物理学报, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [10] 张敏睿, 贺正权, 汪韬, 田进寿. 偏振双向衰减对光学成像系统像质影响的矢量平面波谱理论分析. 物理学报, 2017, 66(8): 084202. doi: 10.7498/aps.66.084202
    [11] 袁铮, 董建军, 李晋, 陈韬, 张文海, 曹柱荣, 杨志文, 王静, 赵阳, 刘慎业, 杨家敏, 江少恩. 分幅变像管动态空间分辨率的标定. 物理学报, 2016, 65(9): 095202. doi: 10.7498/aps.65.095202
    [12] 李朝辉, 赵建科, 徐亮, 刘峰, 郭毅, 刘锴, 赵青. 点源透过率测试系统精度标定与分析. 物理学报, 2016, 65(11): 114206. doi: 10.7498/aps.65.114206
    [13] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [14] 相里斌, 张文喜, 伍洲, 吕笑宇, 李杨, 周志盛, 孔新新. 相干场成像技术接收镜精度对传递函数的影响. 物理学报, 2013, 62(22): 224201. doi: 10.7498/aps.62.224201
    [15] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [16] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [17] 张荣福, 王涛, 潘超, 王亮亮, 庄松林. 波前编码系统景深延拓性能研究. 物理学报, 2011, 60(11): 114204. doi: 10.7498/aps.60.114204
    [18] 邹继军, 常本康, 杨智, 张益军, 乔建良. 指数掺杂GaAs光电阴极分辨力特性分析. 物理学报, 2009, 58(8): 5842-5846. doi: 10.7498/aps.58.5842
    [19] 戚巽骏, 林 斌, 曹向群, 陈钰清. 基于调制传递函数的光学低通滤波器评价模型与实验研究. 物理学报, 2008, 57(5): 2854-2859. doi: 10.7498/aps.57.2854
    [20] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
计量
  • 文章访问数:  5602
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-16
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-04-05

/

返回文章
返回