搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体-镀层基底界面波的传播特性

马琦 胡文祥 徐琰锋 王浩

引用本文:
Citation:

流体-镀层基底界面波的传播特性

马琦, 胡文祥, 徐琰锋, 王浩

Propagation properties of interface waves at fluid-coated solid interface

Ma Qi, Hu Wen-Xiang, Xu Yan-Feng, Wang Hao
PDF
导出引用
  • 理论分析了脉冲激光激发的流体-分层固体结构声场,在此基础上数值计算了流体-慢层快底固体和流体-快层慢底固体结构液-固界面Scholte波的频散特性与瞬态响应. 数值结果显示,对于流体-慢层快底结构,Scholte界面波呈现出正常频散特性;而对于流体-快层慢底结构,Scholte波在较小的频厚积范围呈反常频散特性. 理论瞬态信号也显示了同样的特性. 采用脉冲激光激励,用水听器接收的方式进行了Scholte界面波的实验测量. 实验测量和分析结果与理论结果有很好的一致性. 此工作可为水浸检测条件下镀层与薄膜材料参数的超声无损表征、海底沉积物参数反演等应用提供理论基础.
    The interface waves propagating along liquid-solid interface are widely studied and used in a lot of fields, especially in ocean acoustics, ocean engineering, and ocean geophysics. The dispersion characteristics of this kind of interface wave are closely related to the seafloor medium parameters, which is an effective means for the inversion of the seafloor sediments. However, the interface wave is difficult to use for ultrasonic nondestructive material characterization, especially for stiff and dense solid materials, owing to the mode shape or wave structure of the liquid-solid interface waves.The fraction of the total wave energy that travels in the fluid compared with the solid depends on the properties of the solid material. Usually, for a stiff and dense solid compared with the fluid, most of the energy travels in the fluid, while for a soft solid more energy travels in the solid. Therefore, it is difficult to use this kind interface wave for stiff solid material characterization. However, in the case of liquid-coated solid interface, the behaviors and properties of interface waves are quite different.In this paper, we use pulsed laser to generate the interface waves at the water-coated solid interfaces. The theoretical analysis of the laser-induced excitation of acoustic waves propagating along a plane interface between liquid and layered elastic solid is perforemd first. The general solution for the interface motion is derived. The analytic expression of the transient response is then obtained. Based on this expression, the dispersion characteristics of the interface waves, which propagate along the fluid-coated solid interface for the cases of slow coating on fast substrate and fast coating on slow substrate, are calculated and analyzed. The transient response signals are further calculated. In the case of slow coating on fast substrate, the interface wave shows an evident dispersion, in which its phase velocity is larger than its group velocity. In the case of fast coating on slow substrate, the interface wave also shows a remarkable dispersion within a smaller frequency-thickness product range, in which its phase velocity is less than its group velocity. The theoretical transient signals show the same properties.In order to verify the theoretical results, an experimental system is set up, and the interface waves are generated and measured. The experimental system mainly consists of pulsed laser, hydrophone, oscilloscope, and movable translation stage. The pulsed laser is used to excite the interface waves, and the hydrophone mounted on the movable translation stage is placed near the interface to receive the signals. Two kinds of samples of slow coating on fast substrate and fast coating on slow substrate are made and measured. The recorded testing signals are then processed and analyzed.The theoretical results and the experimental ones are in good agreement. The research results presented in this paper can provide theoretical basis for ultrasonic nondestructive characterization of coating and film material in immersion testing mode, and also for seafloor sediment parameter inversion.
      通信作者: 胡文祥, wxhu@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11374230)资助的课题.
      Corresponding author: Hu Wen-Xiang, wxhu@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374230).
    [1]

    Glorieux C, Rostyne K V, Nelson K, Gao W, Lauriks W, Thoen J 2001 J. Acoust. Soc. Am. 110 1299

    [2]

    van Dalen K N, Drijkoningen G G, Smeulders D M J, Heller H K J, Glorieux C, Sarens B, Verstraeten B 2011 J. Acoust. Soc. Am. 130 1299

    [3]

    Potty G R, Miller J H 2012 Proceedings of the 3rd International Conference on Ocean Acoustics AIP Publishing November, 2012 p500

    [4]

    Nguyen X N, Dahm T, Grevemeyer I 2009 J. Seismol. 13 543

    [5]

    Bohlen T, Kugler S, Klein G, Theilen F 2004 Geophysics 69 330

    [6]

    Ali H B, Bibee L D 1992 Proc. IEEE 1 465

    [7]

    Zhu J, Popovics J S 2006 Geophys. Res. Lett. 33 L09603

    [8]

    Farnell G, Adler E 1972 Elastic Wave Propagation in Thin Layers in Physical Acoustics (Vol. IX) (New York: Academic Press) pp35-127

    [9]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [10]

    Hu W X, Qian M L 2000 Chin. J. Acoust. 19 174

    [11]

    Ma Q, Hu W X 2014 Proceedings of the 21st International Congress on Sound and Vibration Beijing, China, July 13-17, 2014

    [12]

    McDonald F A 1990 Appl. Phys. Lett. 56 230

    [13]

    D Alleyne, P Cawley 1991 J. Acoust. Soc. Am. 89 1159

  • [1]

    Glorieux C, Rostyne K V, Nelson K, Gao W, Lauriks W, Thoen J 2001 J. Acoust. Soc. Am. 110 1299

    [2]

    van Dalen K N, Drijkoningen G G, Smeulders D M J, Heller H K J, Glorieux C, Sarens B, Verstraeten B 2011 J. Acoust. Soc. Am. 130 1299

    [3]

    Potty G R, Miller J H 2012 Proceedings of the 3rd International Conference on Ocean Acoustics AIP Publishing November, 2012 p500

    [4]

    Nguyen X N, Dahm T, Grevemeyer I 2009 J. Seismol. 13 543

    [5]

    Bohlen T, Kugler S, Klein G, Theilen F 2004 Geophysics 69 330

    [6]

    Ali H B, Bibee L D 1992 Proc. IEEE 1 465

    [7]

    Zhu J, Popovics J S 2006 Geophys. Res. Lett. 33 L09603

    [8]

    Farnell G, Adler E 1972 Elastic Wave Propagation in Thin Layers in Physical Acoustics (Vol. IX) (New York: Academic Press) pp35-127

    [9]

    Lowe M J S 1995 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42 525

    [10]

    Hu W X, Qian M L 2000 Chin. J. Acoust. 19 174

    [11]

    Ma Q, Hu W X 2014 Proceedings of the 21st International Congress on Sound and Vibration Beijing, China, July 13-17, 2014

    [12]

    McDonald F A 1990 Appl. Phys. Lett. 56 230

    [13]

    D Alleyne, P Cawley 1991 J. Acoust. Soc. Am. 89 1159

  • [1] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [2] 苏娜娜, 韩庆邦, 蒋謇. 无限流体中孔隙介质圆柱周向导波的传播特性. 物理学报, 2019, 68(8): 084301. doi: 10.7498/aps.68.20182300
    [3] 李雪梅, 俞宇颖, 谭叶, 胡昌明, 张祖根, 蓝强, 傅秋卫, 景海华. Bi在固液混合相区的冲击参数测量及声速软化特性. 物理学报, 2018, 67(4): 046401. doi: 10.7498/aps.67.20172166
    [4] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [5] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [6] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜. 三维传输子量子比特的退相干参数表征. 物理学报, 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [7] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [8] 易泰民, 邢丕峰, 郑凤成, 梅鲁生, 杨蒙生, 赵利平, 李朝阳, 谢军, 杜凯, 马坤全. 磁控溅射沉积铝/贫铀与金/贫铀镀层的界面研究. 物理学报, 2013, 62(10): 108101. doi: 10.7498/aps.62.108101
    [9] 谭晓玲, 耿优福, 周骏, 姚建铨. THz波在金属镀层空芯波导中传输的理论和实验研究. 物理学报, 2011, 60(5): 054101. doi: 10.7498/aps.60.054101
    [10] 赖云锋. 合成参数对气-液-固法低温生长MgO纳米线的影响. 物理学报, 2010, 59(12): 8814-8819. doi: 10.7498/aps.59.8814
    [11] 何燕飞, 龚荣洲, 王 鲜, 赵 强. 蜂窝结构吸波材料等效电磁参数和吸波特性研究. 物理学报, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
    [12] 李富才, 孟 光. 窄频带Lamb波频散特性研究. 物理学报, 2008, 57(7): 4265-4272. doi: 10.7498/aps.57.4265
    [13] 韩庆邦, 钱梦騄, 朱昌平. 激光超声方法研究固-固界面波传播特性. 物理学报, 2007, 56(1): 313-320. doi: 10.7498/aps.56.313
    [14] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [15] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [16] 陈传盛, 陈小华, 李学谦, 张 刚, 易国军, 张 华, 胡 静. 碳纳米管增强镍磷基复合镀层研究. 物理学报, 2004, 53(2): 531-536. doi: 10.7498/aps.53.531
    [17] 赵晓鹏, 高秀敏, 高向阳, 郜丹军. 固液双相电流变系统流动过程的相转变特性. 物理学报, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [18] 刘红侠, 郝 跃. 薄栅氧化层经时击穿的参数表征研究. 物理学报, 2000, 49(6): 1163-1167. doi: 10.7498/aps.49.1163
    [19] 金蔚青, 小松启. 固液界面温度的一种测量方法. 物理学报, 1985, 34(9): 1166-1172. doi: 10.7498/aps.34.1166
    [20] 徐介平. 声光器件的换能器带宽和镀层厚度的确定. 物理学报, 1979, 28(6): 796-806. doi: 10.7498/aps.28.796
计量
  • 文章访问数:  4889
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-06
  • 修回日期:  2017-01-23
  • 刊出日期:  2017-04-05

/

返回文章
返回