搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波导间能量耦合效应的光子晶体频段选择与能量分束器

赵绚 刘晨 马会丽 冯帅

引用本文:
Citation:

基于波导间能量耦合效应的光子晶体频段选择与能量分束器

赵绚, 刘晨, 马会丽, 冯帅

Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides

Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai
PDF
导出引用
  • 基于波导间能量耦合效应的光子晶体功率分束器具有结构紧凑、带宽较宽、弯曲损耗低、分光角度大和不受外界电磁场干扰等优点.本文利用时域有限差分方法,理论研究了二维三角晶格光子晶体耦合波导的功率分束特性,设计得出了一种能够在宽频谱范围内针对不同频率区间实现不同分光比的功能器件.在此基础上通过改变耦合区介质柱形状以及输出分支波导与能量耦合波导的连接位置,最终针对三个相邻频率范围内的入射光信号,较好地实现了三均分、二均分、单一输出通道这3种能量分配输出模式.该功能器件具有透过率对比度高、结构紧凑等特性,对于发展全光功能器件在大规模全光复杂集成领域内的实际应用具有一定的促进作用.
    The photonic crystal power splitter based on the energy coupling effect between waveguides has the advantages of compact structure, wide bandwidth, low bending loss, large angle of separation, and no external electromagnetic interference. In this paper, the power splitting characteristics of two-dimensional triangular-lattice photonic crystal coupled waveguide are theoretically studied by using the finite-difference time-domain method, and a functional device is designed in order to achieve different output power ratios within different frequency ranges.In the two-dimensional photonic crystal structure with triangular lattice, we set two adjacent straight waveguides and the light beam is introduced from one of them. Because of the energy coupling effect between the two line defects, the light energy propagates alternately in them. Based on this principle, structures of different coupling lengths are simulated and the interference effect of each surface is considered. The device with the best coupling length is achieved for three different output energy propagating characteristics at different frequencies, which include three-division, two-division and single output cases. That is to say, the incident light beam within a frequency band travels through a particular waveguide; light in another frequency band only flows through the other two output waveguides; light in the third frequency band is assigned to all the three output waveguides equally. However, the frequency band width for the high-quality light beam splitting area as well as the transmittance contrast of the other two functional band areas are not very ideal.Based on the above numerical results, two transmission modes in the coupling waveguides are achieved by changing the cross section shape of the dielectric column in the coupling region and also by changing the connecting position between the output branch waveguide and the energy-coupling waveguide. Through the above change, the splitting performance is further optimized.By detecting and analyzing the relative intensity of the three output waveguides, we can determine the range of the incident light beam. Furthermore, the frequency ranges of the three different light output characteristics can be adjusted flexibly by changing the cross section shape of the dielectric column in the coupling region or by changing the connecting position of output waveguides. The functional device proposed in this paper has a high transmittance contrast ratio and a compact structure, which will promote the practical application of the all-optical functional devices in the fields of large-scale all-optical complex integration.
      通信作者: 冯帅, fengshuai75@163.com
    • 基金项目: 国家自然科学基金(批准号:11374378,11574408,61675238)、国家重大科学仪器设备开发专项(批准号:2012YQ14000508)、留学人员科技活动择优资助项目和大学生创新性试验计划(批准号:GCCX2016110007,URTP2016110009)资助的课题.
      Corresponding author: Feng Shuai, fengshuai75@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374378, 11574408, 61675238), the National Instrumentation Program, China (Grant No. 2012YQ14000508), the Technology Foundation for Selected Overseas Chinese Scholar, and the Undergraduate Innovative Test Program, China (Grant Nos. GCCX2016110007, URTP2016110009).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Yu T B, Jiang X Q, Yang J Y, Zhou H F 2007 Phys. Lett. A 369 167

    [4]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [5]

    Liao Q H, Zhang X, Xia Q, Yu T B, Chen S W, Liu N H 2013 Acta Phys. Sin. 62 044220 (in Chinese) [廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华 2013 物理学报 62 044220]

    [6]

    Harris S E, Field J E, Imamoglu A 1990 Phy. Rev. Lett. 64 1107

    [7]

    Kim H J, Park I, Park S G, Lee E H, Lee S G 2004 Opt. Express 12 5625

    [8]

    Park I, Lee H S, Kim H J, Moon K M, Lee S G, Park S G, Lee E H 2004 Opt. Express 6 3599

    [9]

    Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 J. Lightwave Technol. 22 12

    [10]

    Chiu W Y, Huang T W, Wu Y H, Huang F H, Chan Y J, Hou C H, Chien H T, Chen C C, Chen S H, Chyi J I 2008 J. Lightwave Technol. 26 5

    [11]

    Fan D H, Wu P, Xin F, Yu T B 2008 Chin. J. Quant. Elect. 25 82 (in Chinese) [范定环, 吴评, 辛锋, 于天宝 2008 量子电子学报 25 82]

    [12]

    Jin X J 2011 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [金晓君 2011 硕士学位论文 (南京: 南京邮电大学)]

    [13]

    Li W, Xu Y H 2011 Laser J. 32 6 (in Chinese) [李未, 徐玉华 2011 激光杂志 32 6]

    [14]

    Miu L P, Xu X M, Yang C Y, Ye T 2011 Chin. J. Quant. Elect. 28 369 (in Chinese) [缪路平, 徐旭明, 杨春云, 叶涛 2011 量子电子学报 28 369]

    [15]

    Li L, Liu G Q, Chen Y H, Tang F L 2013 Acta Phot. Sin. 42 167 (in Chinese) [黎磊, 刘桂强, 陈元浩, 唐发林 2013 光子学报 42 167]

    [16]

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002 (in Chinese) [黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002]

    [17]

    Tan J B, Chen H M 2013 Commun. Technol. 46 27 (in Chinese) [谈继斌, 陈鹤鸣 2013 通信技术 46 27]

    [18]

    Cheng W, Li J S 2014 Acta Phot. Sin. 43 0123002 (in Chinese) [程伟, 李九生 2014 光子学报 43 0123002]

    [19]

    Zhou J, Tian H P, Yang D Q, Liu Q, Huang L J, Ji Y F 2014 Appl. Opt. 53 8012

    [20]

    Tee D C, Kambayashi T, Sandoghchi S R, Tamchek N, Adikan F R M 2012 J. Lightwave Technol. 30 2818

    [21]

    Tee D C, Tamchek N, Shee Y G, Adikan F R M 2014 Opt. Express 22 24241

    [22]

    Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝, 王明华, 江晓清, 杨建义 2006 物理学报 55 1851]

    [23]

    Xu X M, Yue Y L, Fang L G, Zhu G X, Qian X X 2008 Study Opt. Commun. 149 50 (in Chinese) [徐旭明, 乐庸炉, 方利广, 朱桂新, 钱小霞 2008 光通信研究 149 50]

    [24]

    Xu X M, Li W, Fang L G, Yu T B, Yue Y L, Yang C Y 2009 Laser Technol. 33 416 (in Chinese) [徐旭明, 李未, 方利广, 于天宝, 乐庸炉, 杨春云 2009 激光技术 33 416]

    [25]

    Saidani N, Belhadj W, AbdelMalek F, Bouchriha H 2012 Opt. Commun. 285 3487

    [26]

    Wu Y D, Li J J, Chen H Y 2009 Semicond. Optoelectron. 30 823 (in Chinese) [吴耀德, 李继军, 陈海燕 2009 半导体光电 30 823]

    [27]

    Zhang J, Yu T B, Liu N H, Liao Q H, He L J 2011 Acta Phys. Sin. 60 104217 (in Chinese) [张军, 于天宝, 刘念华, 廖清华, 何灵娟 2011 物理学报 60 104217]

    [28]

    Yu B, Zhang L H, Chen X Y, Yang F, Sun X H, Ge J X 2015 Optoelectr. Technol. 35 155 (in Chinese) [于兵, 张龙华, 陈晓晔, 杨斐, 孙小菡, 葛俊祥 2015 光电子技术 35 155]

    [29]

    Xu X M, Li W, Fang L G, Yue Y L, Yang C Y, Qian X X 2008 Study On Opt. Commun. 150 34 (in Chinese) [徐旭明, 李未, 方利广, 乐庸炉, 杨春云, 钱小霞 2008 光通信研究 150 34]

  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Yu T B, Jiang X Q, Yang J Y, Zhou H F 2007 Phys. Lett. A 369 167

    [4]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [5]

    Liao Q H, Zhang X, Xia Q, Yu T B, Chen S W, Liu N H 2013 Acta Phys. Sin. 62 044220 (in Chinese) [廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华 2013 物理学报 62 044220]

    [6]

    Harris S E, Field J E, Imamoglu A 1990 Phy. Rev. Lett. 64 1107

    [7]

    Kim H J, Park I, Park S G, Lee E H, Lee S G 2004 Opt. Express 12 5625

    [8]

    Park I, Lee H S, Kim H J, Moon K M, Lee S G, Park S G, Lee E H 2004 Opt. Express 6 3599

    [9]

    Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 J. Lightwave Technol. 22 12

    [10]

    Chiu W Y, Huang T W, Wu Y H, Huang F H, Chan Y J, Hou C H, Chien H T, Chen C C, Chen S H, Chyi J I 2008 J. Lightwave Technol. 26 5

    [11]

    Fan D H, Wu P, Xin F, Yu T B 2008 Chin. J. Quant. Elect. 25 82 (in Chinese) [范定环, 吴评, 辛锋, 于天宝 2008 量子电子学报 25 82]

    [12]

    Jin X J 2011 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [金晓君 2011 硕士学位论文 (南京: 南京邮电大学)]

    [13]

    Li W, Xu Y H 2011 Laser J. 32 6 (in Chinese) [李未, 徐玉华 2011 激光杂志 32 6]

    [14]

    Miu L P, Xu X M, Yang C Y, Ye T 2011 Chin. J. Quant. Elect. 28 369 (in Chinese) [缪路平, 徐旭明, 杨春云, 叶涛 2011 量子电子学报 28 369]

    [15]

    Li L, Liu G Q, Chen Y H, Tang F L 2013 Acta Phot. Sin. 42 167 (in Chinese) [黎磊, 刘桂强, 陈元浩, 唐发林 2013 光子学报 42 167]

    [16]

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002 (in Chinese) [黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002]

    [17]

    Tan J B, Chen H M 2013 Commun. Technol. 46 27 (in Chinese) [谈继斌, 陈鹤鸣 2013 通信技术 46 27]

    [18]

    Cheng W, Li J S 2014 Acta Phot. Sin. 43 0123002 (in Chinese) [程伟, 李九生 2014 光子学报 43 0123002]

    [19]

    Zhou J, Tian H P, Yang D Q, Liu Q, Huang L J, Ji Y F 2014 Appl. Opt. 53 8012

    [20]

    Tee D C, Kambayashi T, Sandoghchi S R, Tamchek N, Adikan F R M 2012 J. Lightwave Technol. 30 2818

    [21]

    Tee D C, Tamchek N, Shee Y G, Adikan F R M 2014 Opt. Express 22 24241

    [22]

    Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝, 王明华, 江晓清, 杨建义 2006 物理学报 55 1851]

    [23]

    Xu X M, Yue Y L, Fang L G, Zhu G X, Qian X X 2008 Study Opt. Commun. 149 50 (in Chinese) [徐旭明, 乐庸炉, 方利广, 朱桂新, 钱小霞 2008 光通信研究 149 50]

    [24]

    Xu X M, Li W, Fang L G, Yu T B, Yue Y L, Yang C Y 2009 Laser Technol. 33 416 (in Chinese) [徐旭明, 李未, 方利广, 于天宝, 乐庸炉, 杨春云 2009 激光技术 33 416]

    [25]

    Saidani N, Belhadj W, AbdelMalek F, Bouchriha H 2012 Opt. Commun. 285 3487

    [26]

    Wu Y D, Li J J, Chen H Y 2009 Semicond. Optoelectron. 30 823 (in Chinese) [吴耀德, 李继军, 陈海燕 2009 半导体光电 30 823]

    [27]

    Zhang J, Yu T B, Liu N H, Liao Q H, He L J 2011 Acta Phys. Sin. 60 104217 (in Chinese) [张军, 于天宝, 刘念华, 廖清华, 何灵娟 2011 物理学报 60 104217]

    [28]

    Yu B, Zhang L H, Chen X Y, Yang F, Sun X H, Ge J X 2015 Optoelectr. Technol. 35 155 (in Chinese) [于兵, 张龙华, 陈晓晔, 杨斐, 孙小菡, 葛俊祥 2015 光电子技术 35 155]

    [29]

    Xu X M, Li W, Fang L G, Yue Y L, Yang C Y, Qian X X 2008 Study On Opt. Commun. 150 34 (in Chinese) [徐旭明, 李未, 方利广, 乐庸炉, 杨春云, 钱小霞 2008 光通信研究 150 34]

  • [1] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [2] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [3] 左依凡, 李培丽, 栾开智, 王磊. 基于自准直效应的光子晶体异质结偏振分束器. 物理学报, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [4] 湛胜高, 梁斌明, 朱幸福, 陈家壁, 庄松林. 基于空气孔的光子晶体亚波长成像的特性研究. 物理学报, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [5] 程治明, 吴逢铁, 张前安, 郑维涛. 自成像局域空心光束产生的新方法及粒子俘获. 物理学报, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [6] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [7] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [8] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [9] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [10] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性. 物理学报, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [11] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [12] 席丽霞, 唐先锋, 王少康, 张晓光. 基于光子晶体光纤的相位再生器的设计及优化. 物理学报, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [13] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [14] 殷海荣, 宫玉彬, 魏彦玉, 岳玲娜, 路志刚, 巩华荣, 黄民智, 王文祥. 有限开敞介质光子晶体的模式及其带结构分析. 物理学报, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [15] 沈晓鹏, 韩 奎, 李海鹏, 沈义峰, 王子煜. 光子晶体自准直光束偏振分束器. 物理学报, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [16] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [17] 王 科, 郑婉华, 任 刚, 杜晓宇, 邢名欣, 陈良惠. 双色量子阱红外探测器顶部光子晶体耦合层的设计优化. 物理学报, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [18] 殷海荣, 宫玉彬, 魏彦玉, 路志刚, 巩华荣, 岳玲娜, 黄民智, 王文祥. 非截面二维光子晶体排列矩形波导的全模式分析. 物理学报, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [19] 厉以宇, 顾培夫, 李明宇, 张锦龙, 刘 旭. 波状结构二维光子晶体的自准直特性及亚波长成像的研究. 物理学报, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [20] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
计量
  • 文章访问数:  5197
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-26
  • 修回日期:  2017-03-05
  • 刊出日期:  2017-06-05

/

返回文章
返回