搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁冲击相变的晶向效应

李俊 吴强 于继东 谭叶 姚松林 薛桃 金柯

引用本文:
Citation:

铁冲击相变的晶向效应

李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯

Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron

Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke
PDF
导出引用
  • 采用基于火炮加载的三样品精细波剖面对比测量,研究了晶向效应对铁弹-塑性转变及体心立方结构(bcc,相)至六角密排结构(hcp,相)相变特性的影响.观测到单晶铁异常的弹-塑性转变行为,这与基于位错密度描述的黏塑性本构模型计算结果相符,对应的Hugoniot弹性极限HEL均大于6 GPa,且具有晶向相关性,即(111)/(HEL) (110)/(HEL) (100)/(HEL);系统获取了相变起始压力PPT晶向相关性的实验数据,[100],[110]和[111]晶向的PPT实测值分别为13.890.57 GPa,14.530.53 GPa,16.050.67 GPa,其变化规律与非平衡分子动力学计算结果相符.上述结果揭示出冲击压缩下单晶铁存在塑性与相变微观机理的强耦合,为完善用于冲击实验描述的相场动力学模型提供了重要的实验支撑.
    The dynamic response of iron, especially the phase transformation from the ambient body-centered-cubic (bcc) up-phase to the hexagonal-closed packed (hcp) -phase, has been studied extensively in the last 60 years due to its importance in industry and its role as a main constituent of Earth. Recently, this topic has attracted a lot of attention in the aspects of the kinetic characteristics and mechanism of the shock-induced phase transition, including orientation-, temperature-, time- and strain rate-dependences. But only a few data have been published on the crystal orientation effect. The systematic experimental results to identify the predictions of the non-equilibrium molecular dynamics (NEMD) simulation are still lacking. For this reason, we study the shock responses of the [100], [110] and [111] orientated iron single crystals by using a three-independent-sample method in one shot. Unlike previously reported [001] single-crystal iron, a clear three-wave structure consisting of a PEL wave (elastic wave), a P1 wave (plastic wave) and a P2 wave (phase transition wave) is observed in the measured wave profiles for all single-crystal iron samples. The elastic-plastic transition process is in accordance with the numerical simulation of dislocation-based constitutive model for visco-plastic deformation. It is found that the values of Hugoniot elastic limit HEL ((111)/(HEL) (110)/(HEL) (100)/(HEL)) are greater than 6 GPa and dependent on the initial crystal orientation. Such a high yield strength is consistent with the nanosecond X-ray diffraction of [001] single-crystal iron where the uniaxial compression of the lattice has been observed at a shock pressure of about 5.4 GPa. Moreover, the onset pressures PPT for the phase transition are obtained to be 13.890.57 GPa, 14.530.53 GPa and 16.050.67 GPa along the [100], [110], and [111] directions, respectively. Based on these results, it is concluded that the crystal orientation effect of PPT is consistent with the reported NEMD calculations. However, the measured values are lower. In addition, the transition strain-ratio of singlecrystal iron is found to be higher than that of polycrystalline iron, reflecting the influence of the transformation kinetics (i.e., transformation kinetics coefficient) on the wave profile evolution. Our observations indicate that the strong coupling between plasticity and phase transition in single crystal iron might be a key point for understanding the origin of the phase transition and also for ending the controversy of metastable -phase. The fine multi-wave profiles also provide an important experimental reference for improving the phase field modeling of shock-induced phase transition.
      通信作者: 李俊, lijun102@caep.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11602251,11302202)和科学挑战专项(批准号:TZ2016001)资助的课题.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11602251, 11302202) and the Science Challenge Project, China (Grant No. TZ2016001).
    [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

  • [1]

    Saxena S K, Shen G, Lazor P 1993 Science 260 1312

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463

    [3]

    Bancraft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291

    [4]

    Saxena S K, Dubrovinsky L S, Hggkvist P, Cerenius Y, Shen G, Mao H K 1995 Science 269 1703

    [5]

    Belonoshko A B, Dorogokupets P I, Johansson B, Saxena S K, Koči L 2008 Phys. Rev. B 78 104107

    [6]

    Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359

    [7]

    Crowhurst J C, Reed B W, Armstrong M R, Radousky H B, Carter J A, Swift D C, Zaug J M, Minich R W, Teslich N E, Kumer M 2014 J. Appl. Phys. 115 113506

    [8]

    Ma Y Z, Selvi E, Levitas V I, Hashemi J 2006 J. Phys. Condens. Matter 18 1075

    [9]

    Johnson P C, Stein B A, Davis R S 1962 J. Appl. Phys. 33 557

    [10]

    Zaretsky E B 2009 J. Appl. Phys. 106 023510

    [11]

    Merkel S, Liermann H P, Miyagi L 2013 Acta. Materialia 61 5144

    [12]

    Lu Z P, Zhu W J, Liu S J, Lu T C, Chen X R 2009 Acta Phys. Sin. 58 2083 (in Chinese) [卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣 2009 物理学报 58 2083]

    [13]

    Shao J L, He A M, Qin C S, Wang P 2009 Acta Phys. Sin. 58 5610 (in Chinese) [邵建立, 何安民, 秦承森, 王裴 2009 物理学报 58 5610]

    [14]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [15]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2005 Phys. Rev. B 72 064210

    [16]

    Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A, Holian B L 2007 Phys. Rev. Lett. 98 135701

    [17]

    Wang K, Xiao S F, Deng H Q, Zhu W J, Hu W Y 2014 Int. J. Plast. 59 180

    [18]

    Lu Z P, Zhu W J, Lu T C, Wang W Q 2014 Modelling Simul. Sci. Eng. 22 025007

    [19]

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404 (in Chinese) [马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404]

    [20]

    Shao J L, Qin C S, Wang P 2009 Acta Phys. Sin. 58 1936 (in Chinese) [邵建立, 秦承森, 王裴 2009 物理学报 58 1936]

    [21]

    Jensen B J, Gray III G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [22]

    Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507

    [23]

    Yaakobi B, Boehly T R, Meyerhofer D D, Collins T J 2005 Phys. Rev. Lett. 95 075501

    [24]

    Kalantar D H, Belak J F, Collins G W, Colvin J D, Davis H M, Effert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stlken J S, Wark J S 2005 Phys. Rev. Lett. 95 075502

    [25]

    Cao X X, Li J B, Li J, Li X H, Xu L, Wang Y, Zhu W J, Meng C M, Zhou X M 2014 J. Appl. Phys. 116 093516

    [26]

    Hawreliak J A, El-Dasher B, Lorenzana H 2011 Phys. Rev. B 83 144114

    [27]

    Krasnikov V S, Mayer A E, Yalovets P A 2011 Int. J. Plast. 27 1294

    [28]

    Mayer A E, Khishchenko K V, Levashov P R, Mayer P N 2013 J. Appl. Phys. 113 193508

    [29]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [30]

    Yu J D, Wang W Q, Wu Q 2012 Phys. Rev. Lett. 109 115701

计量
  • 文章访问数:  5430
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-02
  • 修回日期:  2017-04-12
  • 刊出日期:  2017-07-05

/

返回文章
返回