搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于金刚石多层波导结构微环谐振器的仿真分析

李志全 白兰迪 顾而丹 谢锐杰 刘同磊 牛力勇 冯丹丹 岳中

引用本文:
Citation:

一种基于金刚石多层波导结构微环谐振器的仿真分析

李志全, 白兰迪, 顾而丹, 谢锐杰, 刘同磊, 牛力勇, 冯丹丹, 岳中

Simulation analysis of micro-ring resonator based on diamond multilayer waveguide structure

Li Zhi-Quan, Bai Lan-Di, Gu Er-Dan, Xie Rui-Jie, Liu Tong-Lei, Niu Li-Yong, Feng Dan-Dan, Yue Zhong
PDF
导出引用
  • 提出了一种以金刚石新型材料为芯层的单微环谐振器模型.谐振器的纵切面采用五层脊形波导结构,中间一层设定为金刚石,上下两侧分别是SiO2和As2S3,即As2S3-SiO2-金刚石-SiO2-As2S3.设置操作波长为1550 nm,依据耦合膜理论和微环谐振理论,利用Comsol软件仿真模拟了单直波导纵切面、直波导和环形波导耦合区的纵切面以及微环在谐振波长为1543 nm时的场强分布,及直波导和环形波导耦合区间距改变时微环的场强分布和传输特性.在此基础上,依据传输矩阵法讨论了微环的品质因数、耦合系数变化对输出光谱的影响,并对微环损耗进行了讨论.结果表明:以金刚石为芯层的微环谐振器具有良好的光学特性,本结构在谐振波长为1543 nm时谐振峰值达到了-12 dB以上,品质因数达到了1.54105,在耦合系数为0.01时,自由光谱范围约为40 nm.
    With the development of the technology for fabricating high-quality synthetic diamond and diamond waveguide structures, more and more researchers are being involved in exploring the particular optical properties of diamond for different applications. Because of its high refractive index and nontoxicity to biological species, diamond can be used to make micro-ring resonator to detect the concentration of liquid or gas. In this paper, a single micro-ring resonator model with diamond serving as the core layer is proposed. In the model, the vertical-section of the waveguide adopts a five-layer ridge-type waveguide structure based on As2S3, SiO2 and diamond, i.e. As2S3-SiO2-Diamond-SiO2-As2S3. To investigate the optical properties of the resonator, the vertical-section of the single straight waveguide, the coupling region of the direct waveguide, and the ring waveguide are simulated with the adopted operating wavelength =1550 nm based on the coupling mode theory and micro-ring resonance theory. In addition, the distribution of the field strength for the micro-ring is described at a resonant wavelength of 1543 nm. It is very important to explore the field intensity distribution of the micro-ring for understanding how the light transmits. The transmission characteristics of the micro-ring with the change of the distance between the straight waveguide and the ring waveguide in the coupling region are also simulated. The quality factor and the influence of the coupling coefficient change on the output spectrum are studied by the transfer matrix method and the micro-ring loss is discussed. It is shown that the micro-ring resonator designed with the diamond material has good transmission characteristics. When the resonant wavelength is 1543 nm, the resonant peak reaches more than -12 dB. The quality factor is about 1.54105. When the coupling coefficient k is 0.01, the free spectral range is about 40 nm. The coupling coefficient k is determined by the distance S of the coupling region. The results show that when S is equal to 50 nm, the output spectrum has a good extinction ratio and is better compared with the other values. The error of material processing is mainly affected by size, so the output spectrum near the distance S=50 nm is studied. The result shows that in the tiny change scope, the spectral output peak is linearly related to S. The structure we suggested in this paper expands the application scope of diamond in the field of optics, and provides some guiding significance for developing the optical integrated chips.
      通信作者: 白兰迪, lzq54@ysu.edu.cn
    • 基金项目: 河北省自然科学基金(批准号:F2017203316)资助的课题.
      Corresponding author: Bai Lan-Di, lzq54@ysu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2017203316).
    [1]

    Chin M K, Ho S T 1998 J. Lightwave Technol. 16 1433

    [2]

    Hong J X, Liu Y, Chen W 2014 J. Optoelectr. Laser 25 1668 (in Chinese)[洪建勋, 刘莹, 陈伟2014光电子激光25 1668]

    [3]

    Dong P, Shafiiha R, Liao S, Liang H, Feng N N, Feng D Z, Li G L, Zheng X Z, Krishnamoorthy A V, Khiavi M A 2010 Opt. Express 18 10941

    [4]

    Wang W, Zhang A H, Yang K, Yang L J, Feng S J, Wang Z 2013 Infrared Laser Eng. 42 2162 (in Chinese)[王巍, 张爱华, 杨铿, 杨丽君, 冯世娟, 王振2013红外与激光工程42 2162]

    [5]

    Tian H, Zhang Y D, Qi D W, Su R Z, Bai Y, Xu Q 2016 Chin. Phys. B 25 064204

    [6]

    Zhang X, Li Z Q, Tong K 2014 Acta Phys. Sin. 63 094207 (in Chinese)[张鑫, 李志全, 童凯2014物理学报63 094207]

    [7]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [8]

    Liu J Q, Wang L, He M D, Huang W Q, Wang D Y, Zou B S, Wen S H 2008 Opt. Express 16 4888

    [9]

    Tao J, Huang X G, Lin X S, Zhang Q, Jin X P 2009 Opt. Express 17 13989

    [10]

    Lin X, Huang X 2009 Opt. Soc. Am. B 26 1263

    [11]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 Opt. Soc. Am. B 27 323

    [13]

    Vermeulen N, Sipe J E, Helt L G, Thienpont H 2012 Laser Photon. Rev. 6 793

    [14]

    Jiang X Q, Li G Y, Wei Y X, Yang J Y, Wang M H 2011 National 15th Optical Fiber Communication and the 16th Annual Meeting of Integrated Optics Xi' an June 26, 2011 p1

    [15]

    Lin Q, Zhang J D, Fauchet P M, Agrawal G P 2006 Opt. Express 14 4786

    [16]

    Jin L 2012 Ph. D. Dissertation (Zhejiang:Zhejiang University) (in Chinese)[金磊2012博士学位论文(浙江:浙江大学)]

    [17]

    Guo J P, Adato R 2008 Opt. Express 16 1232

    [18]

    Li Z Q, An D Y, Zhang X, Zhao L L, Sha X P, Guo S L, Li W C 2015 Spectrosc. Spect. Anal. 35 2660(in Chinese)[李志全, 安东阳, 张鑫, 赵玲玲, 沙晓鹏, 郭士亮, 李文超2015光谱学与光谱分析35 2660]

    [19]

    Boudebs G, Cherukulappurath S, Guignard M, Troles J, Smektala F, Sanchez F 2004 Opt. Commun. 230 331

  • [1]

    Chin M K, Ho S T 1998 J. Lightwave Technol. 16 1433

    [2]

    Hong J X, Liu Y, Chen W 2014 J. Optoelectr. Laser 25 1668 (in Chinese)[洪建勋, 刘莹, 陈伟2014光电子激光25 1668]

    [3]

    Dong P, Shafiiha R, Liao S, Liang H, Feng N N, Feng D Z, Li G L, Zheng X Z, Krishnamoorthy A V, Khiavi M A 2010 Opt. Express 18 10941

    [4]

    Wang W, Zhang A H, Yang K, Yang L J, Feng S J, Wang Z 2013 Infrared Laser Eng. 42 2162 (in Chinese)[王巍, 张爱华, 杨铿, 杨丽君, 冯世娟, 王振2013红外与激光工程42 2162]

    [5]

    Tian H, Zhang Y D, Qi D W, Su R Z, Bai Y, Xu Q 2016 Chin. Phys. B 25 064204

    [6]

    Zhang X, Li Z Q, Tong K 2014 Acta Phys. Sin. 63 094207 (in Chinese)[张鑫, 李志全, 童凯2014物理学报63 094207]

    [7]

    Lin X S, Huang X G 2008 Opt. Lett. 33 2874

    [8]

    Liu J Q, Wang L, He M D, Huang W Q, Wang D Y, Zou B S, Wen S H 2008 Opt. Express 16 4888

    [9]

    Tao J, Huang X G, Lin X S, Zhang Q, Jin X P 2009 Opt. Express 17 13989

    [10]

    Lin X, Huang X 2009 Opt. Soc. Am. B 26 1263

    [11]

    Gong Y K, Wang L R, Hu X H, Li X H, Liu X M 2009 Opt. Express 17 13727

    [12]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 Opt. Soc. Am. B 27 323

    [13]

    Vermeulen N, Sipe J E, Helt L G, Thienpont H 2012 Laser Photon. Rev. 6 793

    [14]

    Jiang X Q, Li G Y, Wei Y X, Yang J Y, Wang M H 2011 National 15th Optical Fiber Communication and the 16th Annual Meeting of Integrated Optics Xi' an June 26, 2011 p1

    [15]

    Lin Q, Zhang J D, Fauchet P M, Agrawal G P 2006 Opt. Express 14 4786

    [16]

    Jin L 2012 Ph. D. Dissertation (Zhejiang:Zhejiang University) (in Chinese)[金磊2012博士学位论文(浙江:浙江大学)]

    [17]

    Guo J P, Adato R 2008 Opt. Express 16 1232

    [18]

    Li Z Q, An D Y, Zhang X, Zhao L L, Sha X P, Guo S L, Li W C 2015 Spectrosc. Spect. Anal. 35 2660(in Chinese)[李志全, 安东阳, 张鑫, 赵玲玲, 沙晓鹏, 郭士亮, 李文超2015光谱学与光谱分析35 2660]

    [19]

    Boudebs G, Cherukulappurath S, Guignard M, Troles J, Smektala F, Sanchez F 2004 Opt. Commun. 230 331

  • [1] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性. 物理学报, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [2] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器. 物理学报, 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [3] 王武越, Yu Yu, 李云飞, 王汞, 李凯, 王志勇, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器(光电技术与应用). 物理学报, 2021, (): . doi: 10.7498/aps.70.20211539
    [4] 汪静丽, 张见哲, 陈鹤鸣. 基于亚波长光栅和三明治结构的偏振无关微环谐振器的设计与仿真. 物理学报, 2021, 70(12): 124201. doi: 10.7498/aps.70.20201965
    [5] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [6] 刘超, 邬云文. Λ型三能级原子与两个谐振器的量子相位门. 物理学报, 2018, 67(17): 170302. doi: 10.7498/aps.67.20180830
    [7] 王君卓, 李尚升, 宿太超, 胡美华, 胡强, 吴玉敏, 王健康, 韩飞, 于昆鹏, 高广进, 郭明明, 贾晓鹏, 马红安, 肖宏宇. Ib型金刚石大单晶的限形生长. 物理学报, 2018, 67(16): 168101. doi: 10.7498/aps.67.20180356
    [8] 吉喆, 贾大功, 张红霞, 张德龙, 刘铁根, 张以谟. 结构参数对串联微环谐振腔编解码器性能的影响. 物理学报, 2015, 64(3): 034218. doi: 10.7498/aps.64.034218
    [9] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [10] 李欣, 王禄娜, 郭士亮, 李志全, 杨明. 温度测量范围加倍的单微环传感器. 物理学报, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [11] 田赫, 孙伟民, 掌蕴东. 耦合谐振器光波导旋转传感的相位灵敏度. 物理学报, 2013, 62(19): 194204. doi: 10.7498/aps.62.194204
    [12] 曹彤彤, 张利斌, 费永浩, 曹严梅, 雷勋, 陈少武. 基于Add-drop型微环谐振腔的硅基高速电光调制器设计. 物理学报, 2013, 62(19): 194210. doi: 10.7498/aps.62.194210
    [13] 张利斌, 陈少武, 费永浩, 曹彤彤, 曹严梅, 雷勋. 光波导微环谐振器用于二进制格式变换研究. 物理学报, 2013, 62(19): 194201. doi: 10.7498/aps.62.194201
    [14] 张富利, 赵晓鹏. 谐振频率可调的环状开口谐振器结构及其效应. 物理学报, 2007, 56(8): 4661-4667. doi: 10.7498/aps.56.4661
    [15] 欧阳晓平, 王 兰, 范如玉, 张忠兵, 王 伟, 吕反修, 唐伟忠, 陈广超. 金刚石膜探测器研制. 物理学报, 2006, 55(5): 2170-2174. doi: 10.7498/aps.55.2170
    [16] 刘存业, 刘 畅. CVD金刚石膜的结构分析. 物理学报, 2003, 52(6): 1479-1483. doi: 10.7498/aps.52.1479
    [17] 孔春阳, 王万录, 廖克俊, 马勇, 王蜀霞, 方亮. p型半导体金刚石膜的磁阻效应. 物理学报, 2001, 50(8): 1616-1622. doi: 10.7498/aps.50.1616
    [18] 张晓平, 高志强, 孙碧武, 谢侃, 林彰达. 金刚石膜与Si衬底间过渡层的结构稳定性. 物理学报, 1993, 42(2): 309-313. doi: 10.7498/aps.42.309
    [19] 吴君汝, A. LARRAZA, I. RUDNICK. 水表面波矩型谐振器非线性共振曲线的测量. 物理学报, 1985, 34(6): 796-800. doi: 10.7498/aps.34.796
    [20] 高濂. 金刚石合成中的结构转化. 物理学报, 1982, 31(8): 1085-1089. doi: 10.7498/aps.31.1085
计量
  • 文章访问数:  5301
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-06
  • 修回日期:  2017-05-31
  • 刊出日期:  2017-10-05

/

返回文章
返回