搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯射频器件研究进展

卢琪 吕宏鸣 伍晓明 吴华强 钱鹤

引用本文:
Citation:

石墨烯射频器件研究进展

卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤

Research progress of graphene radio frequency devices

Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He
PDF
导出引用
  • 石墨烯因具有优良的电学特性,在半导体行业中受到广泛关注,特别因其具有超薄的结构和极高的载流子迁移率,为解决短沟道效应提供了可能,并且在高速电子领域具有应用前景.近年来,使用石墨烯作为沟道材料制备射频晶体管及射频电路是发挥石墨烯材料优势的一个重要研究方向.制造高性能的射频器件,首先要制备出高性能的石墨烯材料.在金属衬底上沉积均匀的单层石墨烯材料或者在绝缘衬底上外延生长单层、双层石墨烯材料都是获得高质量石墨烯材料的常用方法.器件结构及工艺流程的设计也是提升晶体管射频性能的重要因素,多指栅结构、T型栅结构、埋栅结构以及自对准工艺的发展能够有效改善石墨烯射频晶体管的截止频率及最大振荡频率.石墨烯晶体管独特的电学特性使得其除了可以构造与其他半导体材料电路相似的射频电路结构,还可以构造出功能完整并且结构更加简单的新型射频电路结构.
    Graphene, the first realized two-dimensional material, has received much attention in electronic applications in recent years. With ultra-high carrier mobility and one atom thick structure, graphene becomes a promising semiconductor candidate for solving the problem of short channel effect in nanoscale metal-oxide-semiconductor field-effect transistor (MOSFET), and exploring its applications in radio frequency devices. How to develop the advantages of graphene transistor in radio frequency is an attractive research area. The first step is to obtain high quality graphene material. In this article we summarize the graphene growth methods commonly used in electronic field, including chemical vapor deposition on metal substrates and epitaxial method on wide bandgap semiconductor and insulator substrates. Another key factor to improve graphene transistor performance is to carefully design the device structure and process flow. Multi-finger gate and T-shaped gate are widely used in MOSFET. These two structures can significantly reduce gate resistance, and result in a better radio frequency performance. Inverted process is introduced for graphene FET fabrication, which is compatible with silicon-based back-end-of-line technology. It can reduce the damages to graphene during fabrication. Another improved self-aligned gate deposition process can lead to a good gate coupling and less parasitic parameters. These newly developed process play a prominent part in increasing the cut-off frequency and maximum oscillation frequency of graphene radio frequency devices. In addition, single crystal graphene is helpful in eliminating carriers scattering and improving the radio frequency properties of graphene transistor. So far, the highest cut-off frequency of graphene transistor reaches over 300 GHz by a few groups, but the maximum oscillation frequency remains low. Record-high maximum oscillation frequency is 200 GHz when gate length is 60 nm. Further improvement of maximum oscillation frequency needs to be tried out. Several graphene radio frequency circuits are also discussed in the paper. Some of the circuits have similar structures to silicon-based circuits, and others are designed based on the unique property of graphene transistor, like ambipolar transport properties. The new concept circuits have simpler structures than conventional circuits. With the rapid development of graphene growth and related integrating technology, the potential to use graphene in radio frequency field will be further increased.
      通信作者: 钱鹤, qianh@mail.tsinghua.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CBA01604)、国家自然科学基金(批准号:61377106,61474072)和北京市自然科学基金(批准号:4162031)资助的课题.
      Corresponding author: Qian He, qianh@mail.tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CBA01604), the National Natural Science Foundation of China (Grant Nos. 61377106, 61474072), and the Natural Science Foundation of Beijing, China (Grant No. 4162031).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Geim A K, Novoselov K S 2009 Nat. Mater. 6 183

    [3]

    Schwierz F 2007 Nat. Nanotechnol. 5 487

    [4]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396

    [5]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gunko Y, Boland J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A, Coleman J 2008 Nat. Nanotechnol. 3 563

    [6]

    Schniepp H C, Li J L, Mcallister M J, Sai H, Herrera-Alonso M, Adamson D H, Prudhomme R, Car R, Saville D, Aksay I 2006 J. Phys. Chem. B 110 8535

    [7]

    Segal M 2009 Nat. Nanotechnol. 4 612

    [8]

    Forti S, Emtsev K V, Coletti C, Zakharov A A, Riedl C, Starke U 2008 Phys. Rev. B 78 245403

    [9]

    Forbeaux I, Themlin J M, Debever J M 1998 Phys. Rev. B 58 16396

    [10]

    Yu C, Li J, Liu Q B, Cai S J, Feng Z H 2014 Acta Phys. Sin. 63 038102 (in Chinese) [蔚翠, 李佳, 刘庆彬, 蔡树军, 冯志红 2014 物理学报 63 038102]

    [11]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Riner R, Velamakanni A, Jung I, Tutuc E, Banerjee S, Colombo L, Ruoff R 2009 Science 324 1312

    [12]

    Bae S, Kim H, Lee Y, Lee Y, Xu X, Park J, Zheng Y, Balakrishnan J, Lei T, Kim H, Song Y, Kim Y, Kim K, Kim K, Ozyilmaz B, Ahn J, Hong B, Iijima S 2010 Nat. Nanotechnol. 5 574

    [13]

    Xiao K, Wu H, L H, Wu X, Qian H 2013 Nanoscale 5 5524

    [14]

    Novoselov K S, Fal V I, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192

    [15]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W 2012 J. Am. Chem. Soc. 134 3627

    [16]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [17]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [18]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Functional Mater. 23 198

    [19]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Rouff R 2013 Adv. Mater. 25 2062

    [20]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43

    [21]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930

    [22]

    Yu C, Liu Q, Li J, Lu W, He Z, Cai S, Feng Z 2014 Appl. Phys. Lett. 105 183105

    [23]

    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z 2014 J. Am. Chem. Soc. 136 6574

    [24]

    Chen Y, Sun J, Gao J, Du F, Han Q, Nie Y, Chen Z, Bachmatiuk A, Priydarshi M, Ma D, Song X, Wu X, Xiong C, Rummeli M, Ding F, Zhang Y, Liu Z 2015 Adv. Mater. 27 7839

    [25]

    Cai T, Jia Z, Yan B, Yu D, Wu X 2015 Appl. Phys. Lett. 106 013106

    [26]

    Ding X, Ding G, Xie X, Huang F, Jiang M 2011 Carbon 49 2522

    [27]

    Tang S, Ding G, Xie X, Chen J, Wang C, Ding X, Huang F, Lu W, Jiang M 2012 Carbon 50 329

    [28]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519

    [29]

    Gao T, Song X, Du H, Nie Y, Chen Y, Ji Q, Sun J, Yang Y, Zhang Y, Liu Z 2015 Nat. Commun. 6 6835

    [30]

    Han Y, Zhang L, Zhang X, Ruan K, Cui L, Wang Y, Liao L, Wang Z, Jie J 2014 J. Mater. Chem. C 2 201

    [31]

    Zhang Z, Du J, Zhang D, Sun H, Yin L, Ma L, Chen J, Ma D, Chen H, Ren W 2017 Nat. Commun. 8 14560

    [32]

    Yun W, Zou X, Sun M, Cao Z, Wang X, Shuai H, Zhou J, Ynag Y, Yu X, Kong Y, Yu G, Liao L, Chen T 2016 ACS Appl. Mater. Interfaces 8 25645

    [33]

    Lu N D, Wang L F, Li L, Liu M 2017 Chin. Phys. B 26 036804

    [34]

    Zheng J, Lu W, Ruge Q, Liu Q, Hong L, Yu D, Mei W, Shi J, Gao Z, Lu J 2013 Sci. Rep. 3 1314

    [35]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K L 2008 Nat. Nanotech. 3 653

    [36]

    Wang H, Hus A, Kong J, Antoniadis D A, Palacios T 2011 IEEE Trans. Electron Dev. 58 1523

    [37]

    Frgonese S, Magallo M, Maneux C, Happy H, Zimmer T 2013 IEEE Trans. Nanotech. 12 539

    [38]

    Zhu W N, Linghu C, Zhang J, Zhang L, Yu Z 2012 SISPAD Denver, CO, USA September 5-7, 2012 pp79-82

    [39]

    Scott B W, Leburton J P 2011 IEEE Trans. Nanotech. 10 1113

    [40]

    Zhu R, Zhang Y, Luo J, Chang S, Wang H, Huang Q, He J 2015 Key Eng. Mater. 645-646 139

    [41]

    L H, Lu Q, Huang Y, Ma T, Zhang J, Wu X, Yu Z, Ren W, Cheng H, Wu H, Qian H 2015 Sci. Rep. 5 17649

    [42]

    Han S J, Oida S, Jenkins K A, Lu D, Zhu Y 2013 IEEE Electron Dev. Lett. 34 1340

    [43]

    Han S J, Jenkins K A, Valdes G A, Franklin A D, Bol A A, Haensch W 2011 Nano Lett. 11 3690

    [44]

    Peng S, Jin Z, Zhang D, Shi J, Wang X, Wang S, Li M, Liu X, Yu G 2015 Appl. Phys. Lett. 106 033503

    [45]

    Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J, Cai S 2014 Carbon 75 249

    [46]

    Wu Y, Ma Z F, Du L, Zhang P, He L 2015 Mater. Sci. Forum 815 36

    [47]

    Han S J, Valdes-Garcia A, Bol A A, Franklin A D 2011 IEEE Electron Dev. Meeting 326 pp.2.2.1-2.2.4

    [48]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [49]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [50]

    Lyu H, Qi L, Liu J, Wu X, Zhang J, Li J, Niu J, Yu Z, Wu H, Qian H 2016 Sci. Rep. 6 35717

    [51]

    Liu Q B, Yu C, Li J, Song X B, He Z Z, Lu W L, Gu G D, Wang Y G, Feng Z H 2014 Chin. Phys. Lett. 31 078104

    [52]

    Wei Z J, Fu Y Y, Liu J B, Wang Z D, Jia Y H, Guo J, Ren L M, Chen Y F, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [53]

    Yu C, He Z Z, Li J, Song X B, Liu Q B, Cai S J, Feng Z 2016 Appl. Phys. Lett. 108 013102

    [54]

    He Z Z, Yang K W, Yu C, Liu Q B, Wang J J, Song X B, Han T T, Feng Z H, Cai S J 2016 Chin. Phys. Lett. 33 086801

    [55]

    Wu Y, Jenkins K A, Valdesgarcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P, Lin Y 2012 Nano Lett. 12 3062

    [56]

    Islam M R, Haque M A, Fahim-Al-Fattah M, Alam M N K, Islam M R 2016 International Conference on Informatics, Electronics and Vision Dhaka, Bangladesh, May 13-14, 2016 pp21-25

    [57]

    Allain A, Kang J, Banerjee K, Kis A 2015 Nat. Mater. 14 1195

    [58]

    Smith J T, Franklin A D, Farmer D B, Dimitrakopoulos C D 2013 ACS Nano 7 3661

    [59]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L, Muller D, Guo J, Kim P, Hone J, Shepard K, Dean C 2013 Science 342 614

    [60]

    Song S M, Kim T Y, Jae Sul O, Cheol Shin W 2014 Appl. Phys. Lett. 104 183506

    [61]

    Kwon T, An H, Seo Y S, Jung J 2012 Jpn. J. Appl. Phys. 51 638

    [62]

    Gahng S, Chang H R, Yu J C, Kim J A, Kim T, Yoo W J 2014 Appl. Phys. Lett. 104 223110

    [63]

    Robinson J A, Labella M, Zhu M, Hollander M 2011 Appl. Phys. Lett. 98 053103

    [64]

    Wei S L, Chang T N, Thong J T L 2014 Nano Lett. 14 3840

    [65]

    Li W, Liang Y, Yu D, Peng L 2013 Appl. Phys. Lett. 102 183110

    [66]

    Li W, Hacker C A, Cheng G, Liang Y 2014 J. Appl. Phys. 115 487

    [67]

    Liang Y, Liang X, Zhang Z, Li W, Huo X, Peng L 2015 Nanoscale 7 10954

    [68]

    Cheng R, Bai J, Liao L, Zhou H, Chen Y, Liu L, Lin Y, Jiang S, Huang Y, Duan X 2012 Proc. Natl. Acad. Sci. USA 109 11588

    [69]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K, Huang Y, Duan X 2010 Nature 467 305

    [70]

    Lin Y M, Jenkins K A, Valdesgarcia A, Small J P, Farmer D B, Avouris P 2009 Nano Lett. 9 422

    [71]

    Meric I, Baklitskaya N, Kim P, Shepard K L 2008 IEEE Int. Electron Dev. Meeting San Francisco, CA, USA, December 15-17, 2008 pp1-4

    [72]

    Meric I, Dean C R, Han S J, Wang L 2011 Electron Devices Meeting Washington, DC, USA, December 5-7, 2011 pp2.1.1-2.1.4

    [73]

    Dimitrakopoulos C, Lin Y M, Grill A, Farmer D B 2010 J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. 28 985

    [74]

    Lin Y M, Dimitrakopoulos C, Jenkins K A, Chiu H Y, Grill A, Avouris P 2010 Science 327 662

    [75]

    Guo Z, Dong R, Chakraborty P S, Lourenco N, Palmer J, Hu Y, Ruan M, Hankinson J, Kunc J, Cressler J, Berger C, Heer W 2013 Nano Lett. 13 942

    [76]

    Badmaev A, Che Y, Li Z, Wang C, Zhou C 2012 ACS Nano 6 3371

    [77]

    Han S J, Garcia A V, Oida S, Jenkins K A 2013 IEEE Int. Electron Dev. Meeting Washington, DC, USA, December 9-11, 2013 pp19.9.1-19.9.3

    [78]

    Wu Y, Lin Y, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

    [79]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [80]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [81]

    Lyu H, Wu H, Liu J, Lu Q, Zhang J, Wu X, Li J, Ma T, Niu J, Ren W, Cheng H, Yu Z, Qian H 2015 Nano Lett. 15 6677

    [82]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [83]

    Oostinga J B, Heersche H B, Liu X, Morpurgo A F, Vandersypen L M 2008 Nat. Mater. 7 151

    [84]

    Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P, Shepard K 2008 Nat. Nanotechnol. 3 654

    [85]

    Meric I, Dean C R, Young A F, Baklitskaya N, Tremblay N, Nuckolls C, Kim P, Shepard K 2011 Nano Lett. 11 1093

    [86]

    Dorgan V E, Bae M H, Pop E 2010 Appl. Phys. Lett. 97 082112

    [87]

    Pozar D M 1990 Microwave Engineering (MA: Addison-Wesley)

    [88]

    Yu C, He Z Z, Liu Q B, Song X B, Xu P, Han T T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [89]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074

    [90]

    Yu W C, Chen X F, Hu X B, Xu X G 2016 J. Synthetic Crystals 45 1 (in Chinese) [郁万成, 陈秀芳, 胡小波, 徐现刚 2016 人工晶体学报 45 1]

    [91]

    Chen X, Wu B, Liu Y 2016 Chem. Soc. Rev. 45 2057

    [92]

    Li G, Zhou H, Pan L, Zhang Y, Huang L, Xu W, Du S, Ouyang M, Ferrari A, Gao H J 2015 J. Am. Chem. Soc. 137 7099

    [93]

    Leong W S, Gong H, Thong J T 2014 ACS Nano 8 994

    [94]

    Park H Y, Jung W S, Kang D H, Jeon J, Yoo G, Park Y, Lee J, Jang Y H, Lee J, Park S, Yu H, Shin B, Lee S, Park J 2016 Adv. Mater. 28 864

    [95]

    Cheng C, Huang B, Liu J, Zhang Z 2016 IEEE Electron Dev. Lett. 37 1

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [3] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [4] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [5] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [8] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [9] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [10] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [12] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [13] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [14] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [15] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型. 物理学报, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [16] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析. 物理学报, 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [17] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [18] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [19] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟. 物理学报, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [20] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析. 物理学报, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
计量
  • 文章访问数:  6475
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-04
  • 修回日期:  2017-08-04
  • 刊出日期:  2017-11-05

/

返回文章
返回