搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密颗粒射流倾斜撞击颗粒膜特征

王悦 李伟锋 施浙杭 刘海峰 王辅臣

引用本文:
Citation:

稠密颗粒射流倾斜撞击颗粒膜特征

王悦, 李伟锋, 施浙杭, 刘海峰, 王辅臣

Characteristics of granular sheet of dense granular jet oblique impact

Wang Yue, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen
PDF
导出引用
  • 采用高速摄像仪对稠密颗粒射流倾斜撞击形成的类液体颗粒膜特征进行实验研究,考察了颗粒粒径、射流速度以及射流含固率等因素对颗粒膜形态及动态特征的影响.结果表明:随着颗粒粒径增大,稠密颗粒倾斜撞击流由颗粒膜向散射模式转变;随着射流速度增加,气固不稳定增强,射流流量出现脉动,正面与侧面分别表现为颗粒膜的非轴对称振荡和表面波纹结构;颗粒膜非轴对称振荡的振荡频率和振荡幅度随射流速度的增大而增大;表面波纹速度和波长沿传播方向增大,波纹间存在叠加现象.颗粒膜出现非轴对称振荡主要是因为喷嘴出口由气固不稳定性引起的射流流量脉动,射流流量脉动频率与撞击面振荡频率基本相当.
    Dense granular impinging jets widely exist in natural flow phenomena and industrial processes, such as the rapid heating, cooling or drying, and gasification. It is important to investigate the factors influencing the flow patterns of dense granular impinging jets and reveal the evolution rules of the flow patterns. The dynamic behaviors of the dense granular impinging jets are experimentally studied by a high-speed camera and image processing software of Image J. The effects of the particle diameter, the granular jet velocity (u0) and the solid content of the granular jet (xp) on flow pattern of the granular impinging jet are investigated. Two flow regimes of the dense granular impinging jets, i.e., the liquid-like granular film and the scattering pattern, are identified. The results show that with the increase of the particle diameter and the granular jet velocity, both the solid content of the granular jet and the inter-particle collision frequency decrease, which results in the transition of granular sheet to scattering pattern. With the increase of granular jet velocity, the opening angle of the granular sheet from the side view increases, while the opening angle from the front view increases first and sharply decreases later. The results also show that with the increase of the granular jet velocity, the liquid-like granular film becomes unstable and a non-axisymmetric oscillation appears. And the amplitude and frequency of the liquid-like granular film increase with granular jet velocity increasing, and are significantly affected by particle diameter. The interesting behaviors of the liquid-like surface waves are observed on the granular sheet. The surface waves become remarkable with the increase of the granular jet velocity, and their propagating velocities normalized by the granular jet velocity vary from 0.7 to 0.9. The waves propagating on the granular sheet may emerge, which will reduce the frequencies of the surface waves and increase the surface wavelengths. The results also show that the oscillation frequency of the granular film nearly equals the pulsation frequency of the granular jet. It is indicated that the gas-solid interaction inside the nozzle increases with granular jet velocity increasing, and causes the instability of the granular jet, resulting in the non-axisymmetric oscillation on the granular sheet consequently. The results in this paper present significant knowledge of the dense granular impinging jets and also provide some principles for the applications in dense granular impinging jets in industrial processes.
      通信作者: 李伟锋, liweif@ecust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:91434130,21776072)资助的课题.
      Corresponding author: Li Wei-Feng, liweif@ecust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91434130, 21776072).
    [1]

    Wu Y 2001 Chem. Indus. Eng. Prog. 11 8 (in Chinese)[伍沅 2002 化工进展 11 8]

    [2]

    Guo Q H, Yu G S, Wang F C, Wang Y F, Dai Z H 2017 XIAO Danfei 4 1 (in Chinese)[郭庆华, 于广锁, 王辅臣, 王奕飞, 代正华 2017 氮肥与合成气 4 1]

    [3]

    Liang T, Bai J, Zhang L, Chang C, Fang S H, Han X L 2016 Petrochem. Technol. 3 360 (in Chinese)[梁腾波, 白净,张璐,常春,方书起,韩秀丽 2016 石油化工 3 360]

    [4]

    Liu H J, Zou C, Tian Z W, Zheng C G 2008 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 5 106 (in Chinese)[刘红娟, 邹春, 田智威, 郑楚光 2008 华中科技大学学报:自然科学版 5 106]

    [5]

    Sun Z G, Li W F, Liu H F, Yu Z H 2009 Chem. Reaction Engineer. Technol. 2 97 (in Chinese)[孙志刚, 李伟锋, 刘海峰, 于遵宏 2009 化学反应工程与工艺 2 97]

    [6]

    Sun Z G 2009 Ph. D. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[孙志刚 2009 博士学位论文(上海:华东理工大学)]

    [7]

    Xu H, Zhao H, Zheng C 2014 Chem. Eng. Process. Process Intensify 76 6

    [8]

    Du M, Hao Y L, Liu X D 2009 CIESC J. 60 1950 (in Chinese)[杜敏, 郝英立, 刘向东 2009 化工学报 60 1950]

    [9]

    Du M, Zhao C, Zhou B 2011 Chem. Eng. Sci. 66 4922

    [10]

    Liu X, Chen Y, Chen Y 2014 Chem. Eng. Process. Process Intensify 79 14

    [11]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [12]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [13]

    Johnson C G, Gray J M N T 2011 J. Fluid Mech. 675 87

    [14]

    Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2007 J. Fluid Mech. 572 413

    [15]

    Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2005 Europhys. Lett. 69 365

    [16]

    Qian W W, Li W F, Shi Z H, Liu H F, Wang F C 2016 Acta Phys. Sin. 65 214501 (in Chinese)[钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣 2016 物理学报 65 214501]

    [17]

    Shi Z H, Li W F, Qian W W, Wang F C 2017 Chem. Eng. Sci. 62 1

    [18]

    Shi Z H, Li W F, Liu H F, Wang F C 2017 AIChE J. 63 3276

    [19]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [20]

    Ge W, Chen F, Gao J 2007 Chem. Eng. Sci. 62 3346

    [21]

    O'Rourke P J, Snider D M 2010 Chem. Eng. Sci. 65 6014

    [22]

    Ellowitz J 2016 Phys. Rev. E 93 012907

    [23]

    Huang G F 2014 M. S. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[黄国锋 2014 硕士学位论文(上海:华东理工大学)]

    [24]

    Huang G F, Li W F, Tu G Y 2014 CIESC J. 10 3789 (in Chinese)[黄国峰, 李伟锋, 屠功毅 2014 化工学报 10 3789]

    [25]

    Li W F, Yao T L, Liu H F, Wang F C 2011 AIChE J. 57 1434

  • [1]

    Wu Y 2001 Chem. Indus. Eng. Prog. 11 8 (in Chinese)[伍沅 2002 化工进展 11 8]

    [2]

    Guo Q H, Yu G S, Wang F C, Wang Y F, Dai Z H 2017 XIAO Danfei 4 1 (in Chinese)[郭庆华, 于广锁, 王辅臣, 王奕飞, 代正华 2017 氮肥与合成气 4 1]

    [3]

    Liang T, Bai J, Zhang L, Chang C, Fang S H, Han X L 2016 Petrochem. Technol. 3 360 (in Chinese)[梁腾波, 白净,张璐,常春,方书起,韩秀丽 2016 石油化工 3 360]

    [4]

    Liu H J, Zou C, Tian Z W, Zheng C G 2008 J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 5 106 (in Chinese)[刘红娟, 邹春, 田智威, 郑楚光 2008 华中科技大学学报:自然科学版 5 106]

    [5]

    Sun Z G, Li W F, Liu H F, Yu Z H 2009 Chem. Reaction Engineer. Technol. 2 97 (in Chinese)[孙志刚, 李伟锋, 刘海峰, 于遵宏 2009 化学反应工程与工艺 2 97]

    [6]

    Sun Z G 2009 Ph. D. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[孙志刚 2009 博士学位论文(上海:华东理工大学)]

    [7]

    Xu H, Zhao H, Zheng C 2014 Chem. Eng. Process. Process Intensify 76 6

    [8]

    Du M, Hao Y L, Liu X D 2009 CIESC J. 60 1950 (in Chinese)[杜敏, 郝英立, 刘向东 2009 化工学报 60 1950]

    [9]

    Du M, Zhao C, Zhou B 2011 Chem. Eng. Sci. 66 4922

    [10]

    Liu X, Chen Y, Chen Y 2014 Chem. Eng. Process. Process Intensify 79 14

    [11]

    Cheng X, Varas G, Citron D, Jaeger H M, Nagel S R 2007 Phys. Rev. Lett. 99 188001

    [12]

    Cheng X, Gordillo L, Zhang W W, Jaeger H M, Nagel S R 2014 Phys. Rev. E 89 042201

    [13]

    Johnson C G, Gray J M N T 2011 J. Fluid Mech. 675 87

    [14]

    Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2007 J. Fluid Mech. 572 413

    [15]

    Boudet J F, Amaroucheme Y, Bonnier B, Kellay H 2005 Europhys. Lett. 69 365

    [16]

    Qian W W, Li W F, Shi Z H, Liu H F, Wang F C 2016 Acta Phys. Sin. 65 214501 (in Chinese)[钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣 2016 物理学报 65 214501]

    [17]

    Shi Z H, Li W F, Qian W W, Wang F C 2017 Chem. Eng. Sci. 62 1

    [18]

    Shi Z H, Li W F, Liu H F, Wang F C 2017 AIChE J. 63 3276

    [19]

    Huang Y J, Chan C K, Zamankhan P 2010 Phys. Rev. E 82 031307

    [20]

    Ge W, Chen F, Gao J 2007 Chem. Eng. Sci. 62 3346

    [21]

    O'Rourke P J, Snider D M 2010 Chem. Eng. Sci. 65 6014

    [22]

    Ellowitz J 2016 Phys. Rev. E 93 012907

    [23]

    Huang G F 2014 M. S. Dissertation (Shanghai:East China University of Science and Technology) (in Chinese)[黄国锋 2014 硕士学位论文(上海:华东理工大学)]

    [24]

    Huang G F, Li W F, Tu G Y 2014 CIESC J. 10 3789 (in Chinese)[黄国峰, 李伟锋, 屠功毅 2014 化工学报 10 3789]

    [25]

    Li W F, Yao T L, Liu H F, Wang F C 2011 AIChE J. 57 1434

  • [1] 孙旗霞, 庄建宏, 刘百诚, 沈振兴. 运动颗粒流中的摩擦起电. 物理学报, 2022, 71(8): 084501. doi: 10.7498/aps.71.20211647
    [2] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略. Janus颗粒撞击气泡的行为特征. 物理学报, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [3] 钱文伟, 李伟锋, 施浙杭, 刘海峰, 王辅臣. 稠密颗粒射流撞击壁面颗粒膜表面波纹特征. 物理学报, 2016, 65(21): 214501. doi: 10.7498/aps.65.214501
    [4] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析. 物理学报, 2013, 62(2): 024705. doi: 10.7498/aps.62.024705
    [5] 屠功毅, 李伟锋, 黄国峰, 王辅臣. 平面撞击流偏斜振荡的实验研究与大涡模拟. 物理学报, 2013, 62(8): 084704. doi: 10.7498/aps.62.084704
    [6] 彭政, 蒋亦民. 颗粒孔洞流的最大休止倾角和流量公式. 物理学报, 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [7] 王志明. GaAs自旋注入及巨霍尔效应的研究. 物理学报, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [8] 容亮湾, 詹杰民. 稠密颗粒物质系统鼓泡现象的微观结构研究. 物理学报, 2010, 59(8): 5572-5580. doi: 10.7498/aps.59.5572
    [9] 刘演华, 干富军, 张凯. 平面射流场中纳米颗粒的成核与凝并. 物理学报, 2010, 59(6): 4084-4092. doi: 10.7498/aps.59.4084
    [10] 鲍德松, 雷哲敏, 胡国琦, 张训生, 唐孝威. 瓶颈开口角对二维颗粒流的影响. 物理学报, 2007, 56(10): 5922-5925. doi: 10.7498/aps.56.5922
    [11] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [12] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [13] 吴 强, 郑瑞伦. 含铁磁颗粒的颗粒膜自旋激发弛豫研究. 物理学报, 2005, 54(7): 3397-3401. doi: 10.7498/aps.54.3397
    [14] 邓联文, 江建军, 冯则坤, 张秀成, 何华辉. FeCoBSiO2磁性纳米颗粒膜的微波电磁特性. 物理学报, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [15] 郑 鹉, 王艾玲, 姜宏伟, 周云松, 李 彤. Co-Pt-C颗粒膜的磁性. 物理学报, 2004, 53(8): 2761-2765. doi: 10.7498/aps.53.2761
    [16] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [17] 王松有, 巨晓华, 李合印, 许旭东, 周鹏, 张荣君, 杨月梅, 周仕明, 陈良尧. Fe-Ag颗粒膜的光学与磁光尺寸效应. 物理学报, 2001, 50(11): 2252-2257. doi: 10.7498/aps.50.2252
    [18] 徐克西, 郁黎明, A.A.ESSA, 周世平, 鲍家善. YBCO颗粒膜的非平衡微波响应与Koterlitz-Thouless相变. 物理学报, 1999, 48(6): 1152-1162. doi: 10.7498/aps.48.1152
    [19] 杨新娥, 杨吉生, 东剑涛, 车明日. Fe-Ag金属颗粒膜的巨磁电阻. 物理学报, 1997, 46(9): 1834-1840. doi: 10.7498/aps.46.1834
    [20] 王炜, 余正, 孙元善, 姚希贤. 二维颗粒膜超导电性. 物理学报, 1986, 35(8): 1081-1086. doi: 10.7498/aps.35.1081
计量
  • 文章访问数:  4709
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2018-03-16
  • 刊出日期:  2019-05-20

/

返回文章
返回