搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米金刚石的分散、修饰及载药应用研究

秦世荣 赵琪 程振国 苏丽霞 单崇新

引用本文:
Citation:

纳米金刚石的分散、修饰及载药应用研究

秦世荣, 赵琪, 程振国, 苏丽霞, 单崇新

Disintegration, functionalization and drug-delivery application of nanodiamond

Qin Shi-Rong, Zhao Qi, Cheng Zhen-Guo, Su Li-Xia, Shan Chong-Xin
PDF
导出引用
  • 纳米金刚石(nanodiamond,ND)作为一种重要的碳纳米材料,具有表面易修饰、比表面积大、生物毒性低以及物理化学稳定性好等特点,使其在生物医学领域具有独特的优势.本文通过对ND进行分散和化学修饰得到了分散性良好的羧基化纳米金刚石(ND-COOH),并通过透射电子显微镜、X-射线衍射、傅里叶变换红外谱仪等手段对其形貌和结构进行了表征分析.ND-COOH在水溶液中水解后呈现出较高的负电位,致使其可以通过静电相互作用吸附带正电的抗癌药物盐酸阿霉素(dox),且对阿霉素的负载量可达325 μg/mg.由于ND-COOH与dox之间通过带负电的羧酸根与带正电的质子化氨基结合,因此在H+浓度较高的酸性溶液中,药物复合体ND-dox呈现出显著的pH值依赖药物释放特性,在pH值为5.0的磷酸盐缓冲液中药物释放率达到85%,而在pH值为7.4的PBS中药物释放率低于40%.此外,ND-COOH和ND-dox的细胞毒性和体外细胞杀伤能力结果表明,ND-COOH在0–150 μg/mL范围内对细胞活性没有明显抑制,而ND装载药物dox后的ND-dox对SGC-7901胃癌细胞活性则表现出显著的抑制作用,表明ND-COOH作为药物载体具有较低的生物毒性,而负载药物后则对肿瘤细胞具有较强的杀伤能力.通过对ND进行简单的分散和表面改性,使ND具备良好的药物装载和独特的pH值依赖药物释放特性,这对于促进纳米金刚石在药物载体方面的应用具有重要的借鉴意义.
    In recent years, with the rapid development of nanomedicine, the nanomaterials for bio-medical applications have received much attention. Although there are a variety of nanomaterials such as lipid, carbon nanotube, etc. that have been studied as drug carrier, they are restricted by the potential toxicity and high cost of production. So, it is necessary to find a good alternative for the future drug delivery applications. Detonation nanodiamond, as an important carbon nanomaterial, possesses many excellent properties such as facile functionalization, large specific surface area, low toxicity and high chemical stability and so on, which make them advantageous in bio-medical applications over many other nanomaterials. In this work, the carboxyl functionalized and well-dispersed nanodiamond (ND-COOH) is obtained through disintegration and chemical modification, and then the functionalized nanodiamond is characterized by transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, etc. to analyze its morphology and structure and the toxicity. Besides, the drug loading and release properties are also examined. The ND-COOH exhibits high zeta potential in aqueous solution, which enables them adsorb doxorubicin (dox) molecules onto the surface through electrostatic interaction, and the maximal loading reaches to 325 μg/mg, which is higher than most of reported results. It is because the bond between dox and ND-COOH origins from the electrostatic attraction between negatively charged-COO- on the ND and positively charged–NH3 in the dox. So, when the drug compounds are dispersed into low pH environment, the high H+ concentration would promote the transformation of –COO- into –COOH, which would weaken the electrostatic attraction between ND and dox and hence accelerate the drug release. This leads a drug release to reach 85% in pH 5.0 PBS and less than 40% in pH 7.4 PBS, exhibiting interesting pH-responsive drug release behavior. Finally, the toxicity and in vitro cancer cell killing results of ND-COOH and ND-dox preliminarily show that in the concentration range from 0 to 150 μg/mL, the functionalized ND-COOH does not inhibit the viability of SGC-7901 cells, exhibiting low toxicity. In contrast, the ND-dox shows obvious cytotoxicity towards SGC-7901 cells by strongly inhibiting their viability to lower than 40% in 150 μg/mL group. This work details and systematically discusses the disintegration, functionalization, drug loading and release properties of ND, which would be significant in promoting the biomedical application of ND.
      通信作者: 赵琪, zhaoqiv@126.com;cxshan@zzu.edu.cn ; 单崇新, zhaoqiv@126.com;cxshan@zzu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:21601159)和国家自然科学基金杰出青年科学基金(批准号:61425021)资助的课题.
      Corresponding author: Zhao Qi, zhaoqiv@126.com;cxshan@zzu.edu.cn ; Shan Chong-Xin, zhaoqiv@126.com;cxshan@zzu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 21601159) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 61425021).
    [1]

    Etheridge M L, Campbell S A, Erdman A G, Haynes C L, Wolf S M, Mccullough J 2013 Nanomed. Nanotechnol. 9 1

    [2]

    Wang P W, Liu M J, Jiang L 2016 Acta Phys. Sin. 65 56 (in Chinese) [王鹏伟, 刘明杰, 江雷 2016 物理学报 65 56]

    [3]

    Byrne J D, Betancourt T, Brannon-Peppas L 2008 Adv. Drug Deliver. Rev. 60 1615

    [4]

    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z 2014 Biomaterials 35 5847

    [5]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S, Weiss S 2005 Science 307 538

    [6]

    Taton T A, Mirkin C A, Letsinger R L 2000 Science 289 1757

    [7]

    Wang X H, Zhou Y H 2009 Acta Phys. Sin. 58 4239 (in Chinese) [王兴和, 周延怀 2009 物理学报 58 4239]

    [8]

    Xiong P, Guo P, Xing D, He J S 2006 Acta Phys. Sin. 55 4383 (in Chinese) [熊平, 郭萍, 向东, 何继善 2006 物理学报 55 4383]

    [9]

    Ju H, Roy R A, Murray T W 2013 Biomed. Opt. Express 4 66

    [10]

    Xu C, He W, L Y, Qin C, Shen L, Yin L 2015 Int. J. Pharm. (Amsterdam, Neth.) 493 172

    [11]

    Cho K, Wang X, Nie S, Chen Z, Shin D 2008 Clin. Cancer Res. 14 1310

    [12]

    Slowing I I, Trewyn B G, Giri S, Lin V S Y 2010 Adv. Funct. Mater. 17 1225

    [13]

    Sinha R, Kim G J, Nie S, Shin D M 2006 Mol. Cancer Ther. 5 1909

    [14]

    Labhasetwar V, Song C, Levy R J 1997 Adv. Drug Deliver. Rev. 24 63

    [15]

    Yu S, Kang M, Chang H, Chen K, Yu Y C2006 J. Am. Chem. Soc. 127 17604

    [16]

    Vaijayanthimala V, Tzeng Y, Chang H, Li C 2009 Nanotechnology 20 425103

    [17]

    Vaijayanthimala V, Cheng P, Yeh S, Liu K, Hsiao C, Chao J, Chang H 2012 Biomaterials 33 7794

    [18]

    Dahl J E, Liu S, Carlson R M K 2003 Science 299 96

    [19]

    Arnault J C 2015 Novel Aspects of Diamond 121 85

    [20]

    Zhang Q, Mochalin V N, Neitzel I, Knoke I Y, Han J, Klug C A, Zhou J, Lelkes P I, Gogotsi Y 2011 Biomaterials 32 87

    [21]

    Liu Y, Gu Z, Margrave J L, Khabashesku V N 2004 Chem. Mater. 16 3924

    [22]

    Zhang X, Chen M, Lam R, Xu X, Osawa E, Ho D 2009 ACS Nano 3 2609

    [23]

    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L 2007 Phys. Status Solidi A 204 2881

    [24]

    Krger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii A E, Vul A Y, Ōsawa E 2005 Carbon 43 1722

    [25]

    Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin V N 2016 ACS Appl. Mater. Interfaces 8 25461

    [26]

    Aleksenskiy A E, Eydelman E D, Vul A Y 2011 Nanosci. Nanotechnol. Lett. 3 68

    [27]

    Dong Y, Cao R, Li Y, Wang Z, Li L, Tian L 2015 RSC Adv. 5 82711

    [28]

    Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab N M 2012 New J. Chem. 36 1479

    [29]

    Das G, Nicastri A, Coluccio M L, Gentile F, Candeloro P, Cojoc G, Liberale C, Angelis F D, Fabrizio E D 2010 Microsc. Res. Tech. 73 991

    [30]

    Dong H, Sun X J, Zhang X, Yang D D, Wang X L, Zhang F M 2018 Mater. Rev. 2 189 (in Chinese) [董鸿, 孙晓君, 张欣, 杨豆豆, 王雪亮, 张凤鸣 2018 材料导报 2 189]

    [31]

    Sun C, Qin C, Wang X, Yang G, Shao K, Lan Y, Su Z, Huang P, Wang C, Wang E 2012 Dalton Trans. 41 6906

  • [1]

    Etheridge M L, Campbell S A, Erdman A G, Haynes C L, Wolf S M, Mccullough J 2013 Nanomed. Nanotechnol. 9 1

    [2]

    Wang P W, Liu M J, Jiang L 2016 Acta Phys. Sin. 65 56 (in Chinese) [王鹏伟, 刘明杰, 江雷 2016 物理学报 65 56]

    [3]

    Byrne J D, Betancourt T, Brannon-Peppas L 2008 Adv. Drug Deliver. Rev. 60 1615

    [4]

    Shi J, Wang L, Zhang J, Ma R, Gao J, Liu Y, Zhang C, Zhang Z 2014 Biomaterials 35 5847

    [5]

    Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J, Sundaresan G, Wu A, Gambhir S S, Weiss S 2005 Science 307 538

    [6]

    Taton T A, Mirkin C A, Letsinger R L 2000 Science 289 1757

    [7]

    Wang X H, Zhou Y H 2009 Acta Phys. Sin. 58 4239 (in Chinese) [王兴和, 周延怀 2009 物理学报 58 4239]

    [8]

    Xiong P, Guo P, Xing D, He J S 2006 Acta Phys. Sin. 55 4383 (in Chinese) [熊平, 郭萍, 向东, 何继善 2006 物理学报 55 4383]

    [9]

    Ju H, Roy R A, Murray T W 2013 Biomed. Opt. Express 4 66

    [10]

    Xu C, He W, L Y, Qin C, Shen L, Yin L 2015 Int. J. Pharm. (Amsterdam, Neth.) 493 172

    [11]

    Cho K, Wang X, Nie S, Chen Z, Shin D 2008 Clin. Cancer Res. 14 1310

    [12]

    Slowing I I, Trewyn B G, Giri S, Lin V S Y 2010 Adv. Funct. Mater. 17 1225

    [13]

    Sinha R, Kim G J, Nie S, Shin D M 2006 Mol. Cancer Ther. 5 1909

    [14]

    Labhasetwar V, Song C, Levy R J 1997 Adv. Drug Deliver. Rev. 24 63

    [15]

    Yu S, Kang M, Chang H, Chen K, Yu Y C2006 J. Am. Chem. Soc. 127 17604

    [16]

    Vaijayanthimala V, Tzeng Y, Chang H, Li C 2009 Nanotechnology 20 425103

    [17]

    Vaijayanthimala V, Cheng P, Yeh S, Liu K, Hsiao C, Chao J, Chang H 2012 Biomaterials 33 7794

    [18]

    Dahl J E, Liu S, Carlson R M K 2003 Science 299 96

    [19]

    Arnault J C 2015 Novel Aspects of Diamond 121 85

    [20]

    Zhang Q, Mochalin V N, Neitzel I, Knoke I Y, Han J, Klug C A, Zhou J, Lelkes P I, Gogotsi Y 2011 Biomaterials 32 87

    [21]

    Liu Y, Gu Z, Margrave J L, Khabashesku V N 2004 Chem. Mater. 16 3924

    [22]

    Zhang X, Chen M, Lam R, Xu X, Osawa E, Ho D 2009 ACS Nano 3 2609

    [23]

    Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L 2007 Phys. Status Solidi A 204 2881

    [24]

    Krger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii A E, Vul A Y, Ōsawa E 2005 Carbon 43 1722

    [25]

    Turcheniuk K, Trecazzi C, Deeleepojananan C, Mochalin V N 2016 ACS Appl. Mater. Interfaces 8 25461

    [26]

    Aleksenskiy A E, Eydelman E D, Vul A Y 2011 Nanosci. Nanotechnol. Lett. 3 68

    [27]

    Dong Y, Cao R, Li Y, Wang Z, Li L, Tian L 2015 RSC Adv. 5 82711

    [28]

    Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab N M 2012 New J. Chem. 36 1479

    [29]

    Das G, Nicastri A, Coluccio M L, Gentile F, Candeloro P, Cojoc G, Liberale C, Angelis F D, Fabrizio E D 2010 Microsc. Res. Tech. 73 991

    [30]

    Dong H, Sun X J, Zhang X, Yang D D, Wang X L, Zhang F M 2018 Mater. Rev. 2 189 (in Chinese) [董鸿, 孙晓君, 张欣, 杨豆豆, 王雪亮, 张凤鸣 2018 材料导报 2 189]

    [31]

    Sun C, Qin C, Wang X, Yang G, Shao K, Lan Y, Su Z, Huang P, Wang C, Wang E 2012 Dalton Trans. 41 6906

  • [1] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石. 物理学报, 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 盛洁, 王开宇, 马贝贝, 朱涛, 蒋中英. 多聚赖氨酸诱导的负电性磷脂巨囊泡形变. 物理学报, 2018, 67(15): 158701. doi: 10.7498/aps.67.20180456
    [5] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [6] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [7] 刘丽双, 丑修建, 陈涛, 孙立宁. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究. 物理学报, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [8] 郝卫苗, 杨小宝. 硫修饰对纳米金刚石光电性能调控的理论研究. 物理学报, 2015, 64(5): 056102. doi: 10.7498/aps.64.056102
    [9] 张兆慧, 李海鹏, 毛仕春. 有机分子的结构与排列方式对原子电荷分布及静电作用的影响. 物理学报, 2014, 63(19): 198701. doi: 10.7498/aps.63.198701
    [10] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究. 物理学报, 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [11] 程正富, 龙晓霞, 郑瑞伦. 非简谐振动对纳米金刚石表面性质的影响. 物理学报, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [12] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [13] 杨延宁, 张志勇, 张富春, 张威虎, 闫军锋, 翟春雪. 纳米金刚石的变温场发射. 物理学报, 2010, 59(4): 2666-2671. doi: 10.7498/aps.59.2666
    [14] 马丙现, 贾 瑜, 姚 宁, 杨仕娥, 张兵临. 模板对异构体选择性生长的动力学控制作用与化学气相沉积金刚石的生长机理. 物理学报, 2005, 54(9): 4300-4308. doi: 10.7498/aps.54.4300
    [15] 孙立涛, 巩金龙, 朱志远, 朱德彰, 何绥霞, 王震遐. 等离子体诱导碳纳米管到纳米金刚石的相变. 物理学报, 2004, 53(10): 3467-3471. doi: 10.7498/aps.53.3467
    [16] 陈爱喜, 吴曙东, 金丽霞, 詹志明. 运动的二能级原子与双模量子化腔场的相互作用. 物理学报, 2003, 52(10): 2466-2470. doi: 10.7498/aps.52.2466
    [17] 陈光华, 张兴旺, 季亚英, 严辉. 金属与金刚石薄膜接触的电学特性研究. 物理学报, 1997, 46(6): 1188-1192. doi: 10.7498/aps.46.1188
    [18] 张文军, 韩立, 胡博, 涨仿清, 陈光华. 织构金刚石薄膜的成核与生长. 物理学报, 1996, 45(1): 88-93. doi: 10.7498/aps.45.88
    [19] 罗春平, 孟革, 齐上雪, 林彰达. 原子氢与金刚石表面的相互作用. 物理学报, 1991, 40(4): 667-672. doi: 10.7498/aps.40.667
    [20] 沈主同, 王莉君, 杨奕娟, 聂建军, 刘宇明, 张军. 高压下多晶体金刚石的烧结机制——二元掺杂物和金刚石的相互作用. 物理学报, 1978, 27(3): 344-348. doi: 10.7498/aps.27.344
计量
  • 文章访问数:  9190
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-01
  • 修回日期:  2018-05-17
  • 刊出日期:  2019-08-20

/

返回文章
返回