搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WS2与WSe2单层膜中的A激子及其自旋动力学特性研究

俞洋 张文杰 赵婉莹 林贤 金钻明 刘伟民 马国宏

引用本文:
Citation:

WS2与WSe2单层膜中的A激子及其自旋动力学特性研究

俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏

Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer

Yu Yang, Zhang Wen-Jie, Zhao Wan-Ying, Lin Xian, Jin Zuan-Ming, Liu Wei-Min, Ma Guo-Hong
PDF
导出引用
  • 单层过渡金属硫化物由于其特有的激子效应以及强自旋-谷耦合性质,在光电子学及谷电子学等方面有着很广阔的应用前景.利用超快时间分辨光谱,本文系统地比较了两类钨基单层硫化物(WS2和WSe2)的A-激子动力学和谷自旋弛豫特性.实验结果表明,WS2单层膜的A-激子弛豫表现为双指数过程,而对于WSe2,其A-激子衰减表现为三指数过程,且激子的寿命远长于前者.WS2谷自旋极化弛豫表现为单指数衰减,其寿命约0.35 ps,主要由电子-空穴交换作用所主导.而对于WSe2,谷自旋弛豫表现出双指数弛豫特性:一个寿命为0.5 ps的快过程和一个寿命为28 ps的慢过程.快过程的弛豫来源于电子-空穴交换作用,而慢过程则由于自旋晶格散射形成暗激子的过程.通过调谐抽运光波长,进一步证实WSe2较WS2更容易形成暗激子.
    Two-dimensional transitional metal dichalcogenide (2D TMD) emerges as a good candidate material in optoelectronics and valleytronics due to its particular exciton effect and strong spin-valley locking. Owing to the enhancement of quantum confinement effect and the decline of dielectric shielding effect, the optical excitation of electron-hole pair is enhanced substantially, which makes large TMD exciton binding energy and makes excitons observed easily at room temperature or even higher temperature. Optical response of 2D TMD is dominated by excitons at room temperature, which provides an ideal medium for studying the generation, relaxation and interaction of excitons or trions. By employing ultrafast time resolved spectroscopy, we investigate experimentally the dynamic behaviors of A-exciton and spin relaxations for two types of TMDs, i.e. WS2 and WSe2 monolayers, respectively. By tuning the excitation wavelength of the degenerate pump and probe laser beam, the WS2 monolayer and WSe2 monolayer are excited at their A-exciton resonance transition position or near their A-exciton resonance transition position in order to compare the dynamical evolutions of band structure and exciton polarization of the two similar WS2 and WSe2 monolayer structures. Our experimental results reveal that the relaxation of A exciton in WS2 shows biexponential decay, while that of WSe2 shows triexponential decay, and the A-exciton life time in WSe2 is much longer than that of WS2 counterpart. The spin relaxation of A exciton in WS2 shows a monoexponential feature with a lifetime of 0.35 ps, which is dominated by the electron-hole exchange interaction. For the case of WSe2, the spin relaxation can be well fitted with biexponential function, the fast component has a lifetime of 0.5 ps and the slow one has a lifetime of 28 ps. The fast relaxation is dominated by the electron-hole exchange interaction, and the slow one comes from the formation of dark exciton via spin-lattice coupling. By tuning the excitation wavelength around A-exciton transition, the formation of dark exciton in WSe2 is demonstrated to be much more effective than that in WS2 monolayer. Our experimental results provide qualitative physical images for an in-depth understanding of the relationship between exciton and TMD structure, and also provide reference for further designing and regulating the TMDs based optoelectronic devices.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448

    [3]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225

    [4]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [7]

    Kang K, Xie S, Huang L J, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [8]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [9]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488

    [10]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [11]

    Yan R H, Ourmazed A, Lee K F 1992 IEEE Trans. Electron Dev. 39 1704

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [13]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Di X, Yao W, Xu X D 2013 Nat. Com. 4 1474

    [14]

    Stébé B, Ainane A 1989 Superlattices Microstruct. 5 545

    [15]

    Ramasubramaniam A 2012 Phys. Rev. B 86 115409

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz Tony F 2010 Phys. Rev. Lett. 105 136805

    [17]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898

    [19]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406

    [20]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [21]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Com. 3 887

    [22]

    Yan T F, Qiao X F, Tan P H, Zhang X H 2015 Sci. Rep. 5 15625

    [23]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [24]

    Yang L Y, Sinstsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830

    [25]

    Wang Q S, Ge S F, Xiao L, Qiu J, Ji Y X, Feng J, Sun D 2013 ACS Nano 12 11087

    [26]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [27]

    Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z P, Ruan S 2017 Nanoscale 9 1871

    [28]

    Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [29]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 1 791

    [30]

    Sahin H, Tongay S, Horzum S, Fan W, Zhou J, Li J, Wu J, Peeters F M 2013 Phys. Rev. B 87 165409

    [31]

    Shi H Y, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072

    [32]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schüller C 2011 Appl. Phys. Lett. 99 102109

    [33]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Lupton J, Bratschitsch R, Schüller C, Korn T 2017 Solar RRL 11 1700131

    [34]

    Maialle M Z, de Andrada e Silva E A, Sham L J 1993 Phys. Rev. B 47 15776

    [35]

    Vinattieri A, Jagdeep S, Damen T C, Kim D S, Pfeier L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448

    [3]

    Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225

    [4]

    Zeng H L, Dai J F, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490

    [5]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147

    [6]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703

    [7]

    Kang K, Xie S, Huang L J, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656

    [8]

    Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T, Ye J T 2015 Science 350 1353

    [9]

    Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C, Zhang X 2014 Science 344 488

    [10]

    Mak K F, He K L, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494

    [11]

    Yan R H, Ourmazed A, Lee K F 1992 IEEE Trans. Electron Dev. 39 1704

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [13]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Di X, Yao W, Xu X D 2013 Nat. Com. 4 1474

    [14]

    Stébé B, Ainane A 1989 Superlattices Microstruct. 5 545

    [15]

    Ramasubramaniam A 2012 Phys. Rev. B 86 115409

    [16]

    Mak K F, Lee C, Hone J, Shan J, Heinz Tony F 2010 Phys. Rev. Lett. 105 136805

    [17]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J X, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898

    [19]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406

    [20]

    Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802

    [21]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Com. 3 887

    [22]

    Yan T F, Qiao X F, Tan P H, Zhang X H 2015 Sci. Rep. 5 15625

    [23]

    Zhu C R, Zhang K, Glazov M, Urbaszek B, Amand T, Ji Z W, Liu B L, Marie X 2014 Phys. Rev. B 90 161302

    [24]

    Yang L Y, Sinstsyn N A, Chen W B, Yuan J T, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830

    [25]

    Wang Q S, Ge S F, Xiao L, Qiu J, Ji Y X, Feng J, Sun D 2013 ACS Nano 12 11087

    [26]

    Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D, Jonker B T 2012 Appl. Phys. Lett. 101 221907

    [27]

    Yan P G, Chen H, Yin J D, Xu Z H, Li J R, Jiang Z K, Zhang W F, Wang J Z, Li I L, Sun Z P, Ruan S 2017 Nanoscale 9 1871

    [28]

    Li Y L, Chernikov A, Zhang X, Rigosi A, Hill H M, van der Zande A M, Chenet D A, Shih E M, Hone J, Heinz T F 2014 Phys. Rev. B 90 205422

    [29]

    Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 1 791

    [30]

    Sahin H, Tongay S, Horzum S, Fan W, Zhou J, Li J, Wu J, Peeters F M 2013 Phys. Rev. B 87 165409

    [31]

    Shi H Y, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G, Huang L B 2013 ACS Nano 7 1072

    [32]

    Korn T, Heydrich S, Hirmer M, Schmutzler J, Schüller C 2011 Appl. Phys. Lett. 99 102109

    [33]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Lupton J, Bratschitsch R, Schüller C, Korn T 2017 Solar RRL 11 1700131

    [34]

    Maialle M Z, de Andrada e Silva E A, Sham L J 1993 Phys. Rev. B 47 15776

    [35]

    Vinattieri A, Jagdeep S, Damen T C, Kim D S, Pfeier L N, Maialle M Z, Sham L J 1994 Phys. Rev. B 50 10868

  • [1] 汤衍浩. 转角半导体过渡金属硫族化物莫尔超晶格中的新奇物态. 物理学报, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [2] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [3] 石蓓蓓, 陶广益, 戴宇琛, 何霄, 林峰, 张酣, 方哲宇. 电场调控双层WSe2转角同质结激子莫尔势. 物理学报, 2022, 71(17): 177301. doi: 10.7498/aps.71.20220664
    [4] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [5] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [6] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [7] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [8] 吴元军, 申超, 谭青海, 张俊, 谭平恒, 郑厚植. 基于磁圆二向色谱的单层MoS2激子能量和线宽温度依赖特性. 物理学报, 2018, 67(14): 147801. doi: 10.7498/aps.67.20180615
    [9] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [10] 王文静, 孟瑞璇, 李元, 高琨. 共轭聚合物中受激吸收与受激辐射的量子动力学研究. 物理学报, 2014, 63(19): 197901. doi: 10.7498/aps.63.197901
    [11] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [12] 邸冰, 王亚东, 张亚琳. 链间耦合对极化子非弹性散射性质的影响. 物理学报, 2013, 62(10): 107202. doi: 10.7498/aps.62.107202
    [13] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁. 物理学报, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [14] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [15] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [16] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程. 物理学报, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [17] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [18] 金 华, 张立功, 郑著宏, 孔祥贵, 安立楠, 申德振. ZnCdSe量子阱/CdSe量子点耦合结构中的激子隧穿过程. 物理学报, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [19] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  6256
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-11-20
  • 刊出日期:  2019-01-05

/

返回文章
返回