搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分裂格式有限点集法对孤立波二维非线性问题的模拟

任金莲 任恒飞 陆伟刚 蒋涛

引用本文:
Citation:

基于分裂格式有限点集法对孤立波二维非线性问题的模拟

任金莲, 任恒飞, 陆伟刚, 蒋涛

Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method

Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao
PDF
HTML
导出引用
  • 在提出一种基于时间分裂格式的纯无网格有限点集(split-step finite pointset method, SS-FPM)法的基础上, 数值模拟了含孤立波的二维非线性薛定谔 (nonlinear Schrödinger, NLS) / (Gross-Pitaevskii, GP) 方程. SS-FPM的构造过程为: 1) 基于时间分裂的思想将非线性薛定谔方程分成线性导数项和非线性项; 2) 采用基于Taylor展开和加权最小二乘法的有限点集法, 借助Wendland权函数, 对线性导数项进行数值离散. 随后, 模拟了带有Dirichlet和周期性边界条件的NLS方程, 将所得结果与解析解做对比. 数值结果表明: 给出的SS-FPM粒子法的优点是在粒子分布非均匀情况下仍具有近似二阶精度, 且较网格类有限差分算法实施容易, 较已有改进的光滑粒子动力学方法计算误差小. 最后, 运用SS-FPM对无解析解的二维周期性边界NLS方程和Dirichlet边界玻色-爱因斯坦凝聚二分量GP方程进行了数值预测, 并与其他数值结果进行对比, 准确展现了非线性孤立波奇异性现象和量子化涡旋过程.
    In this paper, a split-step finite pointset method (SS-FPM) is proposed and applied to the simulation of the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) with solitary wave solution. The motivation and main idea of SS-FPMisas follows. 1) The nonlinear Schrödinger equation is first divided into the linear derivative term and the nonlinear term based on the time-splitting method. 2) The finite pointset method (FPM) based on Taylor expansion and weighted least square method is adopted, and the linear derivative term is numerically discretized with the help of Wendland weight function. Then the two-dimensional (2D) nonlinear Schrödinger equation with Dirichlet and periodic boundary conditions is simulated, and the numerical solution is compared with the analytical one. The numerical results show that the presented SS-FPM has second-order accuracy even if in the case of non-uniform particle distribution, and is easily implemented compared with the FDM, and its computational error is smaller than those in the existed corrected SPH methods. Finally, the 2D NLS equation with periodic boundary and the two-component GP equation with Dirichlet boundary and outer rotation BEC, neither of which has an analytical solution, are numerically predicted by the proposed SS-FPM. Compared with other numerical results, our numerical results show that the SS-FPM can accurately display the nonlinear solitary wave singularity phenomenon and quantized vortex process.
      通信作者: 陆伟刚, wglu@yzu.edu.cn ; 蒋涛, jtrjl_2007@126.com
    • 基金项目: 国家自然科学基金(批准号: 11501495, 51779215)、中国博士后科学基金(批准号: 2015M581869, 2015T80589)、江苏省自然科学基金(批准号: BK20150436)、国家科技支撑计划(批准号: 2015BAD24B02-02)和江苏高校品牌专业建设工程(批准号: PPZY2015B109) 资助的课题.
      Corresponding author: Lu Wei-Gang, wglu@yzu.edu.cn ; Jiang Tao, jtrjl_2007@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51779215), the Postdoctoral Science Foundation of China (Grant Nos. 2015M581869, 2015T80589), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150436), the Sub-project of National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAD24B02-02), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (Grant No. PPZY2015B109).
    [1]

    Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar

    [2]

    Qu C, Sun K, Zhang C 2015 Phys. Rev. A 91 053630Google Scholar

    [3]

    Mason P, Aftalion A 2011 Phys. Rev. A 84 033611Google Scholar

    [4]

    Antoine X, Bao W, Besse C 2013 Comput. Phys. Commun. 184 2621Google Scholar

    [5]

    Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827

    [6]

    Wang D S, Shi Y R, Feng W X, Wen L 2017 Physica D 351−352 30Google Scholar

    [7]

    Wang H 2005 Appl. Math. Comput. 170 17

    [8]

    Gao Y L, Mei L Q 2016 Appl. Num. Math. 109 41Google Scholar

    [9]

    Blanes S, Casas F, Murua A 2015 J. Comput. Phys. 303 396Google Scholar

    [10]

    Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43Google Scholar

    [11]

    Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar

    [12]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [13]

    Chen R Y, Tong L M, Nie L R, Wang C I, Pan W 2017 Physica A: Statist. Mech. Appl. 468 532Google Scholar

    [14]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [15]

    Gong Y Z, Wang Q, Wang Y S, Cai J X 2017 J. Comput. Phys. 328 354Google Scholar

    [16]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [17]

    Dehghan M, Mirzaei D 2008 Int. J. Numer. Meth. 76 501Google Scholar

    [18]

    Abbasbandy S, Roohani Ghehsareh H, Hashim I 2013 Eng. Anal. Bound. Elem. 37 885Google Scholar

    [19]

    Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar

    [20]

    刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar

    [21]

    Huang C, Lei J M, Liu M B, Peng X Y 2015 In. J. Num. Meth. Flu. 78 691Google Scholar

    [22]

    蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar

    Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar

    [23]

    Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar

    [24]

    Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.25

    [25]

    Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.30

    [26]

    Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Trans. 71 720Google Scholar

    [27]

    Wendland H 1995 Adv. Comput. Math. 4 389Google Scholar

  • 图 1  几个不同时刻处沿$y = 0.5{\text{π}}$$\left| \psi \right|$变化曲线 (a) 粒子均匀分布; (b) 粒子非均匀分布

    Fig. 1.  The change curve of $\left| \psi \right|$ along $y = 0.5{\text{π}}$ at different time: (a) Uniform mode; (b) non-uniform mode.

    图 2  两种不同的粒子分布 (a) 均匀粒子分布; (b) 非均匀粒子分布

    Fig. 2.  Two kinds of particle distribution: (a) Uniform mode; (b) non-uniform mode

    图 3  两个不同位置不同时刻ψ实部变化曲线图 (a) 沿对角线; (b) 沿$y = {\text{π}}$

    Fig. 3.  The change curve of real part at two positions with different times: (a) Along the diagonal; (b) along $y = {\text{π}}$

    图 4  两个不同时刻波函数$\left| \psi \right|$三维图和等值线图 (a1), (a2) t = 0; (b1), (b2) t = 0.0108

    Fig. 4.  The 3D graphs and contour of $\left| \psi \right|$ at two different times: (a1), (a2) t = 0; (b1), (b2) t = 0.0108.

    图 5  两个不同时刻$\left| \psi \right|$沿x轴 (y = 0)变化曲线 (a) t = 0.05; (b) t = 0.25

    Fig. 5.  The change curve of $\left| \psi \right|$ along x-axis (y = 0) at two different times: (a) t = 0.05; (b) t = 0.25.

    图 6  两个不同时刻${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$的三维数值结果 (a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25

    Fig. 6.  Three-dimensional numerical results of ${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$ at two different times: (a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25

    表 1  粒子分布均匀/非均匀两种情况下的最大误差er

    Table 1.  Maximum error er under uniform/non-uniform particles distribution

    t 均匀分布/10–4 非均匀分布/10–4
    0.5 2.48 3.22
    1.0 4.94 6.12
    1.5 7.40 9.26
    2.0 9.88 16.50
    下载: 导出CSV

    表 2  四种不同方法在t = 2时的数值收敛阶

    Table 2.  The rate of convergence obtained using four different methods at t = 2

    粒子间距 误差 收敛阶
    SS-ICPSPH ${\lambda _0} = {\text{π}}/32$ 8.99×10–2
    ${\lambda _0} = {\text{π}}/64$ 2.23×10–3 2.007
    ${\lambda _0} = {\text{π}}/128$ 5.52×10–4 2.017
    SS-FDM ${\lambda _0} = {\text{π}}/16$ 2.016×10–2
    ${\lambda _0} = {\text{π}}/32$ 5.045×10–3 1.9986
    ${\lambda _0} = {\text{π}}/64$ 1.262×10–3 1.9997
    FPM ${\lambda _0} = {\text{π}}/32$ 4.6×10–3
    ${\lambda _0} = {\text{π}}/64$ 1.35×10–3 1.768
    ${\lambda _0} = {\text{π}}/128$ 3.86×10–4 1.806
    SS-FPM ${\lambda _0} = {\text{π}}/32$ 3.95×10–3
    ${\lambda _0} = {\text{π}}/64$ 9.88×10–4 2.000
    ${\lambda _0} = {\text{π}}/128$ 2.46×10–4 2.006
    下载: 导出CSV

    表 3  三种不同方法在t = 2时的数值收敛阶

    Table 3.  The rate of convergence obtained using three different particle methods at t = 2

    粒子间距 误差/× 10–4 收敛阶
    SS-ICPSPH ${\lambda _0} = {\text{π}}/32$ 75.530
    ${\lambda _0} = {\text{π}}/64$ 18.280 2.046
    ${\lambda _0} = {\text{π}}/128$ 4.316 2.082
    SS-FDM ${\lambda _0} = {\text{π}}/32$ 24.670
    ${\lambda _0} = {\text{π}}/64$ 6.634 1.895
    ${\lambda _0} = {\text{π}}/128$ 1.725 1.943
    SS-FPM ${\lambda _0} = {\text{π}}/32$ 67.840
    ${\lambda _0} = {\text{π}}/64$ 16.790 2.015
    ${\lambda _0} = {\text{π}}/128$ 4.128 2.024
    下载: 导出CSV
  • [1]

    Bao W Z, Chern I L, Lim F Y 2006 J. Comput. Phys. 219 836Google Scholar

    [2]

    Qu C, Sun K, Zhang C 2015 Phys. Rev. A 91 053630Google Scholar

    [3]

    Mason P, Aftalion A 2011 Phys. Rev. A 84 033611Google Scholar

    [4]

    Antoine X, Bao W, Besse C 2013 Comput. Phys. Commun. 184 2621Google Scholar

    [5]

    Wang D S, Xue Y S, Zhang Z F 2016 Rom. J. Phys. 61 827

    [6]

    Wang D S, Shi Y R, Feng W X, Wen L 2017 Physica D 351−352 30Google Scholar

    [7]

    Wang H 2005 Appl. Math. Comput. 170 17

    [8]

    Gao Y L, Mei L Q 2016 Appl. Num. Math. 109 41Google Scholar

    [9]

    Blanes S, Casas F, Murua A 2015 J. Comput. Phys. 303 396Google Scholar

    [10]

    Dehghan M, Taleei A 2010 Comput. Phys. Commun. 181 43Google Scholar

    [11]

    Wang T C, Guo B L, Xu Q B 2013 J. Comput. Phys. 243 382Google Scholar

    [12]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [13]

    Chen R Y, Tong L M, Nie L R, Wang C I, Pan W 2017 Physica A: Statist. Mech. Appl. 468 532Google Scholar

    [14]

    Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar

    [15]

    Gong Y Z, Wang Q, Wang Y S, Cai J X 2017 J. Comput. Phys. 328 354Google Scholar

    [16]

    Cheng R J, Cheng Y M 2016 Chin. Phys. B 25 020203Google Scholar

    [17]

    Dehghan M, Mirzaei D 2008 Int. J. Numer. Meth. 76 501Google Scholar

    [18]

    Abbasbandy S, Roohani Ghehsareh H, Hashim I 2013 Eng. Anal. Bound. Elem. 37 885Google Scholar

    [19]

    Liu M B, Liu G R 2010 Arch. Comput. Meth. Eng. 17 25Google Scholar

    [20]

    刘谋斌, 常建忠 2010 物理学报 59 3654Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 3654Google Scholar

    [21]

    Huang C, Lei J M, Liu M B, Peng X Y 2015 In. J. Num. Meth. Flu. 78 691Google Scholar

    [22]

    蒋涛, 陈振超, 任金莲, 李刚 2017 物理学报 66 130201Google Scholar

    Jiang T, Chen Z C, Ren J L, Li G 2017 Acta Phys. Sin. 66 130201Google Scholar

    [23]

    Jiang T, Chen Z C, Lu W G, Yuan J Y, Wang D S 2018 Comput. Phys. Commun. 231 19Google Scholar

    [24]

    Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.25

    [25]

    Kuhnert J, Tiwari S 2001 Berichte des Fraunhofer ITWMNr.30

    [26]

    Resendiz-Flores E O, Garcia-Calvillo I D 2014 Int. J. Heat Mass Trans. 71 720Google Scholar

    [27]

    Wendland H 1995 Adv. Comput. Math. 4 389Google Scholar

计量
  • 文章访问数:  6032
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-11
  • 修回日期:  2019-05-05
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回