搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

收集振动能的摩擦纳米发电机设计与输出性能

吴晔盛 刘启 曹杰 李凯 程广贵 张忠强 丁建宁 蒋诗宇

引用本文:
Citation:

收集振动能的摩擦纳米发电机设计与输出性能

吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇

Design and output performance of vibration energy harvesting triboelectric nanogenerator

Wu Ye-Sheng, Liu Qi, Cao Jie, Li Kai, Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Jiang Shi-Yu
PDF
HTML
导出引用
  • 随着全球变暖和能源危机的到来, 寻找减少碳排放的可再生能源成为人类文明面临的最紧迫挑战之一. 振动作为一种常见的机械运动形式, 在人们的日常生活中普遍存在. 利用多种原理收集振动能量将其转化为电能成为研究热点. 基于接触生电和静电感应原理的摩擦纳米发电机(TENG)为收集振动能量提供了一种可行的方法. 本文设计了一种接触分离式TENG. 推导了TENG的电极间电压-转移电荷量-板间距离(V-Q-x)之间的关系, 结合实验分析了负载电阻、振动频率等因素对其输出性能的影响关系, 当振动频率为1—6 Hz时, 每个工作循环内电荷的转移量几乎相同, 而电压和电流随着频率的增大而增大, 频率为5 Hz时, 最大输出功率达到0.5 mW. 运用COMSOL软件对TENG进行模拟仿真, 揭示了其在接触分离过程中电势以及聚合物表面电荷密度的分布和变化规律, 为高效收集振动能量的摩擦纳米发电机及自供能振动传感器设计提供理论与实践支撑.
    With the advent of global warming and energy crisis, the search for renewable energy to reduce carbon emissions has become one of the most urgent challenges. Ithas become a research hotspot to collect or harvest various mechanical energy in nature and convert it into electric energy. Vibration is a common form of mechanical movement in our daily life. It is visible both on most working machines and in nature and is a type of potential energy. There are several methods that can convert such mechanical energy into electric energy. Triboelectric nanogenerator (TENG) based on the principle of contact electrification and electrostatic induction which first appeared in 2012 by Zhonglin Wang provides a feasible method of efficiently collecting the vibrational energy with different vibrating frequencies. In this paper, a contact-separation mode of TENG is designed and implemented. The voltage- quantity of charge- distance(V-Q-x)relation of TENG is calculated. During the experiment, the factors such as load resistance, vibration frequency, etc. which affect the output performance, are considered and analyzed. An electrically driven crank-connecting rod mechanism is employed to provide the vibration source with adjustable frequency in a range of 1-6 Hz. The result shows that the amount of charge transfer in each working cycle remains almost unchanged, while the voltage and current increase with frequency increasing. When the frequency is 5 Hz, the best power matching resistance of the TENG is about 33 MΩ and the maximum output power reaches 0.5 mW. For a further study, a COMSOL software is used to simulate the distribution rule and variation rule of the electric potential in the contact-separation process, then the theoretical charge density and the experimental charge density on the polymer surface are compared and analyzed in order to provide theoretical and practical support for the design of TENG with collected vibration energy and self-powered vibration sensor. The result shows that the electric potential is proportional to the distance between two friction layers. While as the distance between two friction layers increases, the electric potential and the charge density both show a tendency to concentrate in the middle of the friction layer. The huge difference between experimental result and the simulation predicts thatmuch work should be done continually to improve the output of the TENG. Finally, the obtained results conduce to understanding the contact electrification and electrostatic induction mechanism and also provide a new method of harvesting the vibration energy.
      通信作者: 程广贵, ggcheng@ujs.edu.cn ; 丁建宁, dingjn@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51675236)和国家自然科学基金重大研究计划(培育)(批准号: 91648109)资助的课题
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn ; Ding Jian-Ning, dingjn@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675236) and the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91648109)
    [1]

    Haque R I, Farine P A, Briand D 2018 Sens. Actuators 271 88Google Scholar

    [2]

    Lin Z M, Yang J, Li X S, Wu Y F, Wei W, Liu J, Chen J, Yang J 2018 Adv. Funct. Mater. 28 4280

    [3]

    Chen X, Song Y, Chen H, Zhang J, Zhang H 2017 J. Mater. Chem. A 5 508

    [4]

    Qian J, Kim D S, Lee D W 2018 Nano Energy 49 126Google Scholar

    [5]

    Zi Y, Guo H, Wen Z, Yeh M H, Hu C, Wang Z L 2016 ACS Nano 10 4797Google Scholar

    [6]

    Jiang T, Tang W, Chen X, Han C B, Lin L, Zi Y, Wang Z L 2016 Adv. Mater. Technol. 1 1600017Google Scholar

    [7]

    Tang W, Jiang T, Fan F R, Yu A F, Zhang C, Cao X, Wang Z L 2015 Adv. Funct. Mater. 25 3718Google Scholar

    [8]

    Feng Y, Zheng Y, Ma S, Wang D, Zhou F, Liu W 2016 Nano Energy 19 48Google Scholar

    [9]

    王中林 2013 中国科学: 化学 43 759

    Wang Z L 2013 Sci. Sin. Chim. 43 759

    [10]

    Xu L, Jiang T, Lin P, Shao J, Wang Z L 2018 ACS Nano 12 1849Google Scholar

    [11]

    Zhao X J, Kuang S Y, Wang Z L, Zhu G 2018 ACS Nano 12 4280Google Scholar

    [12]

    Pan L, Wang J, Wang P, Gao R, Wang Y C, Zhang X 2018 Nano Res. 1−12

    [13]

    Dudem B, Huynh N D, Kim W, Kim D H, Hwang H J, Choi D, Yu J S 2017 Nano Energy 42 269Google Scholar

    [14]

    Cheng G G, Jiang S Y, Li K, Zhang Z Q, Wang Y, Yuan N Y, Ding J N, Zhang W 2017 Appl. Surf. Sci. 412 350Google Scholar

    [15]

    Wang S, Wang X, Wang Z L, Yang Y 2016 ACS Nano 10 5696Google Scholar

    [16]

    Wang M, Zhang J H, Tang Y, Li J, Zhang B S, Liang E J, Mao Y C, Wang X D 2018 ACS Nano 12 6156Google Scholar

    [17]

    Wu C, Kima T W, Sung S, Park J H, Li F 2018 Nano Energy 44 279Google Scholar

    [18]

    Mao Y C, Geng D L, Liang E J, Wang X D 2015 Nano Energy 15 227Google Scholar

    [19]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S P, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Noshir S P, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [20]

    Wu Y, Hu Y, Huang Z, Hu Y, Peng Z, Li X, Wang F 2018 Sens. Actuators 271 364Google Scholar

    [21]

    Chen S N, Chen C H, Lin Z H, Tsao Y H, Liu C P 2018 Nano Energy 45 311Google Scholar

    [22]

    温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳 2017 物理学报 66 228401Google Scholar

    Wen T, He J, Zhang Z X, Tian Z M, Mu J L, Han J Q, Chou X J, Xue C Y 2017 Acta Phys. Sin. 66 228401Google Scholar

    [23]

    Ren X, Fan H, Wang C, Ma J, Lei S, Zhao Y 2017 Nano Energy 35 233Google Scholar

    [24]

    Shao H Y, Wen Z, Cheng P, Sun N, Shen Q Q, Zhou C J, Peng M F, Yang Y Q, Xie X K, Su X H 2017 Nano Energy 39 608Google Scholar

    [25]

    Yang J, Yang F, Zhao L, Shang W, Qin H, Wang S, Jiang X, Cheng G, Du Z 2018 Nano Energy 46 220Google Scholar

    [26]

    Cheng G, Zheng H, Yang F, Zhao L, Zheng M, Yang J, Qin H, Du Z, Wang Z L 2018 Nano Energy 44 208Google Scholar

    [27]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166Google Scholar

    [28]

    Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang Z L 2018 ACS Nano 12 3954Google Scholar

    [29]

    Wu Z, Ding W, Dai Y, Dong K, Wu C, Zhang L, Lin Z, Cheng J, Wang Z L 2018 ACS Nano 12 5726Google Scholar

    [30]

    Wang P H, Liu R Y, Ding W B, Zhang P, Pan L, Dai G Z, Zou H Y, Dong K, Xu C, Wang Z L 2018 Adv. Funct. Mater. 28 1705808Google Scholar

    [31]

    Ren Z W, Nie J H, Shao J J, Lai Q S, Wang L F, Chen J, Chen X Y, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

    [32]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [33]

    Zhong J W, Zhang Y, Zhong Q, Hu Q Y, Hu B, Wang Z L, Zhou J 2014 ACS Nano 8 6273Google Scholar

  • 图 1  垂直接触摩擦纳米发电机3D示意图

    Fig. 1.  3D schematic of vertical contact-separation TENG

    图 2  摩擦纳米发电机输出性能测试装置示意图

    Fig. 2.  Schematic diagram of the output performance test system

    图 3  摩擦纳米发电机工作原理

    Fig. 3.  Working principle of friction generator

    图 4  TENG三维模型示意图

    Fig. 4.  Schematic diagram of the TENGs 3D model

    图 5  不同分离距离的电势分布图

    Fig. 5.  The potential distribution picture with different distance

    图 6  不同距离的电能密度分布图

    Fig. 6.  The energy density distribution picture with different distance

    图 7  垂直接触TENG的V-Q-x模型

    Fig. 7.  V-Q-x model of vertical contact TENGs

    图 8  振动频率为5 Hz时, TENG的输出特性 (a)开路电压; (b)短路电流; (c)一个周期中电荷转移量

    Fig. 8.  Out performance of the TENG when the vibration frequency is 5 Hz: (a) The open circuit voltage; (b) the short circuit current of the TEGs; (c) the amount of the charge transferred in one cycle

    图 9  振动频率为5 Hz时TENG的输出性能随外负载的变化曲线 (a)摩擦纳米发电机的输出电压; (b)输出功率、电流

    Fig. 9.  The output performance curves with external load at a frequency of 5 Hz: (a) The output voltage; (b) the output power and current of TENG

    图 10  不同测试频率下的输出性能 (a)输出电压; (b)输出电流; (c)单个周期内电荷转移量

    Fig. 10.  The output performance of the TENG under different testing frequency: (a) Output voltage; (b) output current; (c) the amount of transferred charge in a single cycle at different test frequencies

  • [1]

    Haque R I, Farine P A, Briand D 2018 Sens. Actuators 271 88Google Scholar

    [2]

    Lin Z M, Yang J, Li X S, Wu Y F, Wei W, Liu J, Chen J, Yang J 2018 Adv. Funct. Mater. 28 4280

    [3]

    Chen X, Song Y, Chen H, Zhang J, Zhang H 2017 J. Mater. Chem. A 5 508

    [4]

    Qian J, Kim D S, Lee D W 2018 Nano Energy 49 126Google Scholar

    [5]

    Zi Y, Guo H, Wen Z, Yeh M H, Hu C, Wang Z L 2016 ACS Nano 10 4797Google Scholar

    [6]

    Jiang T, Tang W, Chen X, Han C B, Lin L, Zi Y, Wang Z L 2016 Adv. Mater. Technol. 1 1600017Google Scholar

    [7]

    Tang W, Jiang T, Fan F R, Yu A F, Zhang C, Cao X, Wang Z L 2015 Adv. Funct. Mater. 25 3718Google Scholar

    [8]

    Feng Y, Zheng Y, Ma S, Wang D, Zhou F, Liu W 2016 Nano Energy 19 48Google Scholar

    [9]

    王中林 2013 中国科学: 化学 43 759

    Wang Z L 2013 Sci. Sin. Chim. 43 759

    [10]

    Xu L, Jiang T, Lin P, Shao J, Wang Z L 2018 ACS Nano 12 1849Google Scholar

    [11]

    Zhao X J, Kuang S Y, Wang Z L, Zhu G 2018 ACS Nano 12 4280Google Scholar

    [12]

    Pan L, Wang J, Wang P, Gao R, Wang Y C, Zhang X 2018 Nano Res. 1−12

    [13]

    Dudem B, Huynh N D, Kim W, Kim D H, Hwang H J, Choi D, Yu J S 2017 Nano Energy 42 269Google Scholar

    [14]

    Cheng G G, Jiang S Y, Li K, Zhang Z Q, Wang Y, Yuan N Y, Ding J N, Zhang W 2017 Appl. Surf. Sci. 412 350Google Scholar

    [15]

    Wang S, Wang X, Wang Z L, Yang Y 2016 ACS Nano 10 5696Google Scholar

    [16]

    Wang M, Zhang J H, Tang Y, Li J, Zhang B S, Liang E J, Mao Y C, Wang X D 2018 ACS Nano 12 6156Google Scholar

    [17]

    Wu C, Kima T W, Sung S, Park J H, Li F 2018 Nano Energy 44 279Google Scholar

    [18]

    Mao Y C, Geng D L, Liang E J, Wang X D 2015 Nano Energy 15 227Google Scholar

    [19]

    程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S P, 张忠强, 郭立强, 王莹 2016 物理学报 65 060201Google Scholar

    Cheng G G, Zhang W, Fang J, Jiang S Y, Ding J N, Noshir S P, Zhang Z Q, Guo L Q, Wang Y 2016 Acta Phys. Sin. 65 060201Google Scholar

    [20]

    Wu Y, Hu Y, Huang Z, Hu Y, Peng Z, Li X, Wang F 2018 Sens. Actuators 271 364Google Scholar

    [21]

    Chen S N, Chen C H, Lin Z H, Tsao Y H, Liu C P 2018 Nano Energy 45 311Google Scholar

    [22]

    温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳 2017 物理学报 66 228401Google Scholar

    Wen T, He J, Zhang Z X, Tian Z M, Mu J L, Han J Q, Chou X J, Xue C Y 2017 Acta Phys. Sin. 66 228401Google Scholar

    [23]

    Ren X, Fan H, Wang C, Ma J, Lei S, Zhao Y 2017 Nano Energy 35 233Google Scholar

    [24]

    Shao H Y, Wen Z, Cheng P, Sun N, Shen Q Q, Zhou C J, Peng M F, Yang Y Q, Xie X K, Su X H 2017 Nano Energy 39 608Google Scholar

    [25]

    Yang J, Yang F, Zhao L, Shang W, Qin H, Wang S, Jiang X, Cheng G, Du Z 2018 Nano Energy 46 220Google Scholar

    [26]

    Cheng G, Zheng H, Yang F, Zhao L, Zheng M, Yang J, Qin H, Du Z, Wang Z L 2018 Nano Energy 44 208Google Scholar

    [27]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166Google Scholar

    [28]

    Wang J, Ding W, Pan L, Wu C, Yu H, Yang L, Liao R, Wang Z L 2018 ACS Nano 12 3954Google Scholar

    [29]

    Wu Z, Ding W, Dai Y, Dong K, Wu C, Zhang L, Lin Z, Cheng J, Wang Z L 2018 ACS Nano 12 5726Google Scholar

    [30]

    Wang P H, Liu R Y, Ding W B, Zhang P, Pan L, Dai G Z, Zou H Y, Dong K, Xu C, Wang Z L 2018 Adv. Funct. Mater. 28 1705808Google Scholar

    [31]

    Ren Z W, Nie J H, Shao J J, Lai Q S, Wang L F, Chen J, Chen X Y, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

    [32]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [33]

    Zhong J W, Zhang Y, Zhong Q, Hu Q Y, Hu B, Wang Z L, Zhou J 2014 ACS Nano 8 6273Google Scholar

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 谢静, 王利, 刘崇, 张艳丽, 刘强, 汪涛, 柴志豪, 夏志强, 杨琳, 张攀政, 朱宝强. 神光II升级激光装置基频输出能力提升. 物理学报, 2023, 72(19): 194202. doi: 10.7498/aps.72.20230643
    [3] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [4] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [5] 陈康, 沈煜年. 软体机器人用多孔聚合物水凝胶的摩擦接触非线性行为. 物理学报, 2021, 70(12): 120201. doi: 10.7498/aps.70.20202134
    [6] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器. 物理学报, 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [7] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [8] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [9] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [10] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [11] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [12] 段芳莉, 王明, 刘静. 摩擦导致的聚合物表层微观结构改变. 物理学报, 2015, 64(6): 066801. doi: 10.7498/aps.64.066801
    [13] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [14] 李文萃, 刘永刚, 宣丽. 表面摩擦处理对全息聚合物分散液晶光栅电光特性的影响. 物理学报, 2011, 60(4): 046101. doi: 10.7498/aps.60.046101
    [15] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [16] 徐苗, 彭俊彪. 制膜工艺对聚合物太阳电池性能影响的研究. 物理学报, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [17] 彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟. 非晶/结晶共混对聚合物光伏电池性能的影响. 物理学报, 2009, 58(9): 6582-6589. doi: 10.7498/aps.58.6582
    [18] 朱德喜, 甄红宇, 叶辉, 刘旭. 基于空穴注入层摩擦定向的偏振蓝光聚合物电致发光器件. 物理学报, 2009, 58(1): 596-601. doi: 10.7498/aps.58.596
    [19] 甄红宇, 罗 潺, 朱德喜, 叶 辉, 王军培. 一种红光螯合电磷光聚合物光电性能的研究. 物理学报, 2008, 57(3): 1918-1923. doi: 10.7498/aps.57.1918
    [20] 凌帆, 吴长勤, 孙鑫. 基态非简并的聚合物中的晶格振动频谱. 物理学报, 1990, 39(5): 802-808. doi: 10.7498/aps.39.802
计量
  • 文章访问数:  15674
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-26
  • 修回日期:  2019-07-05
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回