搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响

赵杰 唐德礼 许丽 李平川 张帆 李建 桂兵仪

引用本文:
Citation:

阳极磁屏蔽对阳极层霍尔推力器内磁极刻蚀的影响

赵杰, 唐德礼, 许丽, 李平川, 张帆, 李建, 桂兵仪

Effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster

Zhao Jie, Tang De-Li, Xu Li, Li Ping-Chuan, Zhang Fan, Li Jian, Gui Bing-Yi
PDF
HTML
导出引用
  • 利用PIC与溅射模拟相结合的方法, 研究阳极层霍尔推力器的阳极磁屏蔽对内磁极刻蚀速率的影响. 通过磁屏蔽技术, 改变了阳极表面的磁场位形分布, 提高了推力器磁镜场的磁镜比和中轴线上的正梯度的磁场宽度. 磁镜比是原来的1.4倍, 且增加了两个鞍形磁场区域. 在放电电压900 V, 工作气压2 × 10–2 Pa时, 仿真结果表明: 在阳极磁屏蔽的情况下, 大部分轰击内磁极的离子能量概率分布范围在40—260 eV之间, 比无屏蔽下的40—360 eV下降了将近100 eV; 入射角余弦值的最大概率分布从0.1附近的小范围(入射角84°)扩展到0.1—0.45 (入射角84°—63°)的大范围; 阳极屏蔽后的内磁极最大刻蚀速率是6.1 × 10–10 m/s, 比无磁屏蔽时的16 × 10–10 m/s降低了38.2%. 无磁屏蔽下的仿真结果和实验结果具有很好的一致性.
    For anode layer Hall plasma thruster, the etching of inner magnetic pole is one of the key factors affecting its service life. In order to solve the problem of inner magnetic pole etching in anode layer Hall plasma thruster, the effect of anode magnetic shield on inner magnetic pole etched in anode layer Hall thruster is studied by combining particle simulation PIC with sputtering simulation. The magnetic shielding of anode changes the distribution of magnetic field configuration on the surface of the anode, and improves the magnetic mirror ratio of the magnetic mirror field of the thruster to the magnetic field width of the positive gradient on the central axis. The ratio of the magnetic mirror is 1.4 times that of the original one, and two additional saddle magnetic fields are added on both sides of the original saddle magnetic field region. It not only is conducive to confining electrons and improving the ionization rate of working gas, but also keeps a certain distance between the anode and the high temperature electron region, which provides the reliable reference data for the design of high power Hall plasma thruster. When the discharge voltage is 900 V and the working pressure is 2 × 10–2 Pa, the simulation results show that after the anode is shielded by the magnetic shield, the energy range of most of the incident ions on the inner magnetic pole is 40–260 eV, which is 100 eV lower than the energy range 40–360 eV in the case without shielding the anode. The probability distribution of particle energy without magnetically shielding the anode between 260 eV and 600 eV is obviously higher than that of ion energy with magnetically shielding the anode. The maximum probability distribution of cosine value of incident angle is extended from a small range near 0.1 (incident angle 84°) to a large range of 0.1–0.45 (incident angle 84°–63°). The magnetic shielding makes the incident ions disperse on the surface of the inner magnetic pole, which is helpful in reducing the etching of inner magnetic pole. The maximum etching rate of inner magnetic pole after the anode has been magnetically shielded is reduced from 16 × 10–10 m/s to 6.1 × 10–10 m/s, which is 2.62 times lower. The comparison of simulation results with experimental results in the case without magnetically shielding the anode shows that they are in good agreement.
      通信作者: 赵杰, zhaojie585@126.com
    • 基金项目: 国家自然科学基金(批准号: 11775073)和四川省科技厅项目(批准号: 2019YJ0705)资助的课题.
      Corresponding author: Zhao Jie, zhaojie585@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11775073) and the Sichuan Provincial Foundation for Program of Science and Technology, China (Grant No. 2019YJ0705).
    [1]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R15Google Scholar

    [3]

    Manzella D, Jankosvsky R S, Hofer R R 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3676

    [4]

    Robert S J, David T J, Charles J S 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3675

    [5]

    Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeut J P 2003 Phys. Plasmas 10 4886Google Scholar

    [6]

    Cao H J, Li Q G, Shan K,Cao Y, Zheng L 2015 IEEE Trans. Plasma Sci. 43 130Google Scholar

    [7]

    于达仁, 张凤奎, 李鸿, 刘辉 2009 物理学报 58 1844Google Scholar

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844Google Scholar

    [8]

    Ross J L, Sommerville J D, King L B 2010 J. Propul. Power 26 1312Google Scholar

    [9]

    赵杰, 唐德礼, 耿少飞 2009 宇航学报 30 690Google Scholar

    Zhao J, Tang D L, Geng S F 2009 J. Astronautics 30 690Google Scholar

    [10]

    Garner C E, Brophy J R 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 AIAA-94-3010

    [11]

    Kristi de G, Jack F, Fred W, Brian B, John D 2004 40th Joint Propulsion Conference and Exhibit Fort Lauderdate, Florida, July 11–14, 2024 AIAA-2004-3603

    [12]

    Welander B, Carpenter C, Kristi D G 2006 42th Joint Propulsion Conference and Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5263

    [13]

    Richard R H, Mikellides I G, Katz I, Goebel D M 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC Paper 2007–267

    [14]

    Sommier E, Allis M K, Cappelli M A 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p189

    [15]

    John T Y, Michael K 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p13

    [16]

    李宏斌, 唐德礼, 聂军伟 2015 核聚变与等离子体物理 35 181Google Scholar

    Li H B, Tang D L, Nie J W 2015 Nuclear Fusion & Plasma Phys. 35 181Google Scholar

    [17]

    张帆, 唐德礼, 聂军伟, 李平川 2016 推进技术 37 386

    Zhang F, Tang D L, Nie J W 2016 J. Propulsion Technol. 37 386

    [18]

    Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305Google Scholar

    [19]

    Zhao J, Tang D L, Geng S F, Wang S Q, Liu J, Xv L 2010 Plasma Sci. Technol. 12 109Google Scholar

    [20]

    赵杰, 唐德礼, 李平川, 耿少飞 2018 真空科学与技术学报 38 708

    Zhao J, Tang D L, Li P C 2018 Chin. J. Vacuum Sci. Technol. 38 708

    [21]

    周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088

  • 图 1  阳极层霍尔推力器结构示意图(1, 外磁极; 2, 阳极; 3, 内屏蔽筒; 4, 磁钢; 5, 阳极磁屏蔽; 6, 外屏蔽筒; 7, 内磁极)

    Fig. 1.  Cross-sectional schematic diagram of the anode layer Hall thruster (1, outer magnetic pole; 2, anode; 3, inner shield; 4, permanent magnet; 5, anode magnetic shield; 6, outer shield; 7, inner magnetic pole).

    图 2  磁场线 (a) 无阳极磁屏蔽; (b) 有阳极磁屏蔽

    Fig. 2.  Magnetic field lines: (a) Without anode magnetic shield; (b) with anode magnetic shield.

    图 3  仿真流程

    Fig. 3.  Simulation process.

    图 4  离子轨迹

    Fig. 4.  Ion trajectory.

    图 5  入射离子能量的概率分布

    Fig. 5.  Probability distribution of the incident ion energy.

    图 6  入射角余弦值的概率分布

    Fig. 6.  Probability distribution of the cosine of the incident angle.

    图 7  内磁极上表面刻蚀速率分布

    Fig. 7.  Distribution of etching rate on upper surface of inner magnetic pole.

    图 8  内磁极内表面刻蚀速率分布

    Fig. 8.  Distribution of etching rate on inner surface of inner magnetic pole.

    图 9  实验后的内磁极刻蚀形貌图

    Fig. 9.  Photos of the inner magnetic pole after experiment.

  • [1]

    Morozov A I, Savelyev V V 2000 Rev. Plasma Phys. 21 203

    [2]

    Zhurin V V, Kaufman H R, Robinson R S 1999 Plasma Sources Sci. Technol. 8 R15Google Scholar

    [3]

    Manzella D, Jankosvsky R S, Hofer R R 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3676

    [4]

    Robert S J, David T J, Charles J S 2002 38th Joint Propulsion Conference and Exhibit, Indianapolis, Indiana, July 7−10, 2002 AIAA-2002-3675

    [5]

    Garrigues L, Hagelaar G J M, Bareilles J, Boniface C, Boeut J P 2003 Phys. Plasmas 10 4886Google Scholar

    [6]

    Cao H J, Li Q G, Shan K,Cao Y, Zheng L 2015 IEEE Trans. Plasma Sci. 43 130Google Scholar

    [7]

    于达仁, 张凤奎, 李鸿, 刘辉 2009 物理学报 58 1844Google Scholar

    Yu D R, Zhang F K, Li H, Liu H 2009 Acta Phys. Sin. 58 1844Google Scholar

    [8]

    Ross J L, Sommerville J D, King L B 2010 J. Propul. Power 26 1312Google Scholar

    [9]

    赵杰, 唐德礼, 耿少飞 2009 宇航学报 30 690Google Scholar

    Zhao J, Tang D L, Geng S F 2009 J. Astronautics 30 690Google Scholar

    [10]

    Garner C E, Brophy J R 1994 30th Joint Propulsion Conference and Exhibit Indianapolis, June 27–29, 1994 AIAA-94-3010

    [11]

    Kristi de G, Jack F, Fred W, Brian B, John D 2004 40th Joint Propulsion Conference and Exhibit Fort Lauderdate, Florida, July 11–14, 2024 AIAA-2004-3603

    [12]

    Welander B, Carpenter C, Kristi D G 2006 42th Joint Propulsion Conference and Exhibit Sacramento, California, July 9–12, 2006 AIAA-2006-5263

    [13]

    Richard R H, Mikellides I G, Katz I, Goebel D M 2007 30th International Electric Propulsion Conference Florence, Italy, September 17–20, 2007 IEPC Paper 2007–267

    [14]

    Sommier E, Allis M K, Cappelli M A 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p189

    [15]

    John T Y, Michael K 2005 Presented at the 29th International Electric Propulsion Conference Princeton, October 31–November 4, 2005 p13

    [16]

    李宏斌, 唐德礼, 聂军伟 2015 核聚变与等离子体物理 35 181Google Scholar

    Li H B, Tang D L, Nie J W 2015 Nuclear Fusion & Plasma Phys. 35 181Google Scholar

    [17]

    张帆, 唐德礼, 聂军伟, 李平川 2016 推进技术 37 386

    Zhang F, Tang D L, Nie J W 2016 J. Propulsion Technol. 37 386

    [18]

    Tang D L, Zhao J, Wang L S, Pu S H, Cheng C M, Chu P K 2007 J. Appl. Phys. 102 123305Google Scholar

    [19]

    Zhao J, Tang D L, Geng S F, Wang S Q, Liu J, Xv L 2010 Plasma Sci. Technol. 12 109Google Scholar

    [20]

    赵杰, 唐德礼, 李平川, 耿少飞 2018 真空科学与技术学报 38 708

    Zhao J, Tang D L, Li P C 2018 Chin. J. Vacuum Sci. Technol. 38 708

    [21]

    周志成, 王敏, 仲小清, 陈娟娟, 张天平 2015 真空科学与技术学报 35 1088

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 白胜波, 陈志华, 张焕好, 陈高捷, 曹世程, 张升博. 硅原子层刻蚀流程的速率优化. 物理学报, 2023, 72(21): 215214. doi: 10.7498/aps.72.20231022
    [3] 李建鹏, 靳伍银, 赵以德. 加速电压和阳极流率对离子推力器性能的影响. 物理学报, 2022, 71(1): 015202. doi: 10.7498/aps.71.20211316
    [4] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜. 基于人工神经网络在线学习方法优化磁屏蔽特性参数. 物理学报, 2019, 68(13): 130701. doi: 10.7498/aps.68.20190234
    [5] 龙建飞, 张天平, 杨威, 孙明明, 贾艳辉, 刘明正. 离子推力器推力密度特性. 物理学报, 2018, 67(2): 022901. doi: 10.7498/aps.67.20171507
    [6] 冯高平, 孙羽, 郑昕, 胡水明. 氦原子精密光谱实验中的精密磁场设计与测量. 物理学报, 2014, 63(12): 123201. doi: 10.7498/aps.63.123201
    [7] 高扬福, 孙晓民, 宋亦旭, 阮聪. 结合实际刻蚀数据的离子刻蚀产额优化建模方法. 物理学报, 2014, 63(24): 248201. doi: 10.7498/aps.63.248201
    [8] 高扬福, 宋亦旭, 孙晓民. 基于刻蚀速率匹配的离子刻蚀产额优化建模方法. 物理学报, 2014, 63(4): 048201. doi: 10.7498/aps.63.048201
    [9] 徐向东, 刘颖, 邱克强, 刘正坤, 洪义麟, 付绍军. HfO2顶层多层介质膜脉宽压缩光栅的离子束刻蚀. 物理学报, 2013, 62(23): 234202. doi: 10.7498/aps.62.234202
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 韩轲, 江滨浩, 纪延超. 霍尔效应推力器放电双稳态机理研究. 物理学报, 2012, 61(7): 075209. doi: 10.7498/aps.61.075209
    [12] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [13] 耿少飞, 唐德礼, 邱孝明, 聂军伟, 于毅军. 霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响. 物理学报, 2012, 61(7): 075210. doi: 10.7498/aps.61.075210
    [14] 曹明涛, 邱淑伟, 郭文阁, 刘韬, 韩亮, 刘昊, 张沛, 张首刚, 高宏, 李福利. 铷原子蒸汽中的光偏振旋转效应. 物理学报, 2012, 61(16): 164208. doi: 10.7498/aps.61.164208
    [15] 邓立赟, 蓝红梅, 刘悦. 霍尔推力器磁场位形及其优化的数值研究. 物理学报, 2011, 60(2): 025213. doi: 10.7498/aps.60.025213
    [16] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响. 物理学报, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [17] 耿少飞, 唐德礼, 赵杰, 邱孝明. 圆柱形阳极层霍尔等离子体加速器的质点网格方法模拟. 物理学报, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [18] 刘门全, 张 洁, 罗志全. 电荷屏蔽对Ⅱ型超新星瞬时爆发能量的影响. 物理学报, 2006, 55(6): 3197-3201. doi: 10.7498/aps.55.3197
    [19] 王 森, 俞国军, 巩金龙, 李勤涛, 朱德彰, 朱志远. 低能氩离子束对多孔铝阳极氧化膜表面的刻蚀效应研究. 物理学报, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [20] 贺莉蓉, 顾春明, 沈文忠, 曹俊诚, 小川博司, 郭其新. 反应离子刻蚀ZnTe的THz辐射和探测研究. 物理学报, 2005, 54(10): 4938-4943. doi: 10.7498/aps.54.4938
计量
  • 文章访问数:  6027
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-01
  • 修回日期:  2019-08-07
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回