搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能

邓长发 燕少安 王冬 彭金峰 郑学军

引用本文:
Citation:

基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能

邓长发, 燕少安, 王冬, 彭金峰, 郑学军

Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy

Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun
PDF
HTML
导出引用
  • 利用导电原子力显微镜技术研究了单根GaN纳米带在光调控下的力电耦合性能. 首先使用化学气相沉积法制备出结晶性良好的GaN纳米带, 然后将GaN纳米带分散到高定向热解石墨基底上, 利用探针作为微电极构成基于单根GaN纳米带的两端结构压电器件. 通过改变探针加载力的大小和引入外加光源调控GaN纳米带的电流输运性能, 对单根GaN纳米带在光调控下的力电耦合性能变化规律进行研究. 研究发现, 在有光条件下单根GaN纳米带整流开关比明显增大, 随着加载力的增大, 单根GaN纳米带电流响应值增大但整流特性减弱. 最后, 基于压电电子学和光电导效应理论, 通过分析肖特基势垒在加载力及光照作用下的变化规律解释了实验现象.
    Gallium nitride (GaN) nanobelt with a quasi-one-dimensional structure possesses good piezoelectric and photoelectric properties. In this paper, the electromechanical coupling properties of single GaN nanobelt under optical modulation are studied by conductive atomic force microscope. The GaN nanobelts with good crystallization are prepared by the chemical vapor deposition method, then they are ultrasonically dispersed on a highly oriented pyrolysis graphite substrate. The conductive probe is used as a microelectrode to construct the two-terminal piezoelectric device based on a single GaN nanobelt, which has good electromechanical coupling performance. By changing the loading force of the probe and introducing an external light source to regulate the current transport properties of GaN nanobelt, the coupling between mechanical and semiconducting properties under light modulating is studied. It is found that the coupling between mechanical and semiconducting performance of the single GaN nanobelt can be effectively modulated by an external light source, and the electromechanical switch ratio of the single GaN nanobelt increases obviously in the presence of light. With the loading force increasing, the current response of the single GaN nanobelt increases but the rectification characteristics decrease. Finally, the experimental results are explained by the piezoelectric electronics and photoconductivity theory. This work is expected to provide a scientific basis for the performance modulation of nano-piezoelectric optoelectronic devices based on low-dimensional GaN nanomaterials.
      通信作者: 燕少安, yanshaoan@xtu.edu.cn ; 郑学军, zhengxuejun@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11832016, 61804130, 51775471)和湖南省自然科学基金(批准号: 2018JJ3513)资助的课题
      Corresponding author: Yan Shao-An, yanshaoan@xtu.edu.cn ; Zheng Xue-Jun, zhengxuejun@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11832016, 61804130, 51775471) and the Provincial Natural Science Foundation of Hunan (Grant No. 2018JJ3513)
    [1]

    Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106Google Scholar

    [2]

    Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391Google Scholar

    [3]

    Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059Google Scholar

    [4]

    Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502Google Scholar

    [5]

    Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301Google Scholar

    [6]

    Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302Google Scholar

    [7]

    Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar

    [8]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [9]

    Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982Google Scholar

    [10]

    Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375Google Scholar

    [11]

    Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar

    [12]

    Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80Google Scholar

    [13]

    Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936Google Scholar

    [14]

    Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186Google Scholar

    [15]

    Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883Google Scholar

    [16]

    Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618Google Scholar

    [17]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532Google Scholar

    [18]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403Google Scholar

    [19]

    Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [20]

    Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067Google Scholar

    [21]

    Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071Google Scholar

    [22]

    Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307Google Scholar

    [23]

    Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103Google Scholar

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578Google Scholar

    [25]

    Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541Google Scholar

    [26]

    Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103Google Scholar

    [27]

    Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030Google Scholar

    [28]

    Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102Google Scholar

    [29]

    Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869Google Scholar

    [30]

    Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108Google Scholar

    [31]

    Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653Google Scholar

    [32]

    Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793Google Scholar

  • 图 1  基于C-AFM的测试装置示意图

    Fig. 1.  Schematic diagram of C-AFM measurement setup.

    图 2  (a) GaN纳米带粉末XRD图谱; (b) GaN纳米带粉末SEM图像; (c)单根GaN纳米带AFM二维形貌图及(d)三维形貌图

    Fig. 2.  (a) XRD scans and (b) SEM image of the as-prepared GaN nanobelt powder; (c) 2-D and (d) 3-D AFM morphology image of a single GaN nanobelt.

    图 3  (a)−(c)暗场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; (e)−(f)光场下单根GaN纳米带的二维电流形貌图, 加载力分别为30, 50, 70 nN; 插图为电流形貌图截面处的电流值

    Fig. 3.  (a)−(c) 2-D current topography of a single GaN nanobelt under dark condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively; (d)−(f) 2-D current topography of a single GaN nanobelt under light condition with the loading forces of 30 nN, 50 nN and 70 nN, respectively. The insert shows the current value at the cross section of 2-D current topography.

    图 4  GaN纳米带单点I-V曲线 (a), (b)暗场不同加载力下的I-V曲线及对数坐标形式; (c), (d)光场不同加载力下的I-V曲线及对数坐标形式

    Fig. 4.  Single point I-V curves of a single GaN nanobelt: (a), (b) I-V curve and its logarithmic coordinate with different loading forces under dark condition; (c), (d) I-V curve and its logarithmic coordinate with different loading forces under light condition.

    图 5  明暗场不同加载力下单根GaN纳米带的I-t曲线 (a) 30 nN; (b) 40 nN

    Fig. 5.  I-t curves of a single GaN nanobelt under different loading forces in light and dark conditions: (a) 30 nN; (b) 40 nN.

    图 6  (a)单根GaN纳米带器件等效电路示意图; (b)光力电耦合能带结构示意图

    Fig. 6.  (a) Schematic diagram of equivalent circuit of the single GaN nanobelt based device; (b) schematic diagram of energy band structure with optically modulated electromechanical coupling.

  • [1]

    Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P D, Saykally R J 2002 Nature Mater. 1 106Google Scholar

    [2]

    Kang M S, Lee C H, Park J B, Yoo H, Yi G C 2012 Nano Energy 1 391Google Scholar

    [3]

    Kim H M, Cho Y H, Lee H, Kim S I, Ryu S R, Kim D Y, Kang T W, Chung K S 2004 Nano Lett. 4 1059Google Scholar

    [4]

    Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P, Jin Z 2018 Chin. Phys. B 27 28502Google Scholar

    [5]

    Zhao S L, Wang Z Z, Chen Z D, Wang M J, Dai Y, Ma X H, Zhang J C, Hao Y 2019 Chin. Phys. B 28 27301Google Scholar

    [6]

    Hou M C, Xie G, Sheng K 2019 Chin. Phys. B 28 37302Google Scholar

    [7]

    Gon M J, Wang Q, Yan J D, Liu F Q, Feng C, Wang X L, Wang Z G 2016 Chin. Phys. Lett. 33 117303Google Scholar

    [8]

    周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红 2018 物理学报 67 178501Google Scholar

    Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501Google Scholar

    [9]

    Holmes M J, Choi K, Kako S, Arita M, Arakawa, Y 2014 Nano Lett. 14 982Google Scholar

    [10]

    Fu K, Fu H Q, Huang X Q, Yang T H, Chen H, Baranowski I, Montes J, Yang C, Zhou J G, Zhao Y J 2019 IEEE Electron Device Lett. 40 375Google Scholar

    [11]

    Tchoe Y, Jo J, Kim M, Heo J, Yoo G, Sone C, Yi G C 2014 Adv. Mater. 26 3019Google Scholar

    [12]

    Tyagi P, Ramesh C, Sharma A, Husale S, Kushvaha S S, Senthil Kumar M 2019 Mater. Sci. Semicond. Process. 97 80Google Scholar

    [13]

    Hu W G, Kalantar-Zadeh K, Gupta K, Liu C P 2018 MRS Bull. 43 936Google Scholar

    [14]

    Goswami L, Pandey R, Gupta G 2018 Appl. Surf. Sci. 449 186Google Scholar

    [15]

    Aggarwal N, Krishna S, Jain S K, Arora A, Goswami L, Sharma A, Husale S, Gundimeda A, Gupta G 2019 J. Alloys Compd. 785 883Google Scholar

    [16]

    Huang J Y, Zheng H, Mao S X, Li Q, Wang G T 2011 Nano Lett. 11 1618Google Scholar

    [17]

    Yu R M, Dong L, Pan C F, Niu S M, Liu H F, Liu W, Chua S, Chi D Z, Wang Z L 2012 Adv. Mater. 24 3532Google Scholar

    [18]

    Yu R M, Wu W Z, Ding Y, Wang Z L 2013 ACS Nano 7 6403Google Scholar

    [19]

    Peng M Z, Liu Y D, Yu A F, Zhang Y, Liu C H, Liu J Y, Wu W, Zhang K, Shi X Q, Kou J Z, Zhai J Y, Wang Z L 2016 ACS Nano 10 1572Google Scholar

    [20]

    Wang X F, Yu R M, Peng W B, Wu W Z, Li S T, Wang Z L 2015 Adv. Mater. 27 8067Google Scholar

    [21]

    Du C H, Jiang C Y, Zuo P, Huang X, Pu X, Zhao Z F, Zhou Y L, Li L X, Chen H, Hu W G, Wang Z L 2015 Small 11 6071Google Scholar

    [22]

    Liu H T, Hua Q L, Yu R M, Yang Y C, Zhang T P, Zhang Y J, Pan C F 2016 Adv. Funct. Mater. 26 5307Google Scholar

    [23]

    Lin F, Chen S W, Meng J, Tse G, Fu X W, Xu F J, Shen B, Liao Z M, Yu D P 2014 Appl. Phys. Lett. 105 073103Google Scholar

    [24]

    Zhao Z F, Pu X, Han C B, Du C H, Li L X, Jiang C Y, Hu W G, Wang Z L 2015 ACS Nano 9 8578Google Scholar

    [25]

    Wang S J, Cheng G, Cheng K, Jiang X H, Du Z L 2011 Nanoscale Res. Lett. 6 541Google Scholar

    [26]

    Yang Y, Qi J J, Gu Y S, Guo W, Zhang Y 2010 Appl. Phys. Lett. 96 123103Google Scholar

    [27]

    Zhang S, Gao L, Song A S, Zheng X H, Yao Q Z, Ma T B, Di Z F, Feng X Q, Li Q Y 2018 Nano Lett. 18 6030Google Scholar

    [28]

    Wu D X, Cheng H B, Zheng X J, Wang X Y, Wang D, Li J 2015 Chin. Phys. Lett. 32 108102Google Scholar

    [29]

    Yan X Y, Peng J F, Yan S A, Zheng X J 2018 J. Electron. Mater. 47 3869Google Scholar

    [30]

    Sun X, Liu W B, Jiang D S, Liu Z S, Zhang S, Wang L L, Wang H, Zhu J J, Duan L H, Wang Y T, Zhao D G, Zhang S M, Yang H 2008 J. Phys. D: Appl. Phys. 41 165108Google Scholar

    [31]

    Yang G, Li Y F, Yao B, Ding Z H, Deng R, Fang X, Wei Z P 2015 ACS Appl. Mater. Interfaces 7 16653Google Scholar

    [32]

    Ryu S R, Ram S D G, Lee S J, Cho H D, Lee S, Kang T W, Kwon S, Yang W, Shin S, Woo Y 2015 Appl. Surf. Sci. 347 793Google Scholar

  • [1] 贾艳敏, 王晓星, 张祺昌, 武峥. 压-电-化学耦合增强策略及机理研究进展. 物理学报, 2023, 72(8): 087701. doi: 10.7498/aps.72.20222078
    [2] 黄鸿飞, 姚杨, 姚承君, 郝翔, 吴银忠. In2Se3薄膜的掺杂效应及其纳米带铁电性. 物理学报, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [3] 汤家鑫, 范志强, 邓小清, 张振华. 非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应. 物理学报, 2022, 71(11): 116101. doi: 10.7498/aps.71.20212342
    [4] 王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣. 二维Janus原子晶体的电子性质. 物理学报, 2021, 70(2): 026801. doi: 10.7498/aps.70.20201406
    [5] 崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛. 小型低频发射天线的研究进展. 物理学报, 2020, 69(20): 208401. doi: 10.7498/aps.69.20200792
    [6] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [7] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [8] 罗旭, 朱海燕, 丁雅萍. 基于力磁耦合效应的铁磁材料修正磁化模型. 物理学报, 2019, 68(18): 187501. doi: 10.7498/aps.68.20190765
    [9] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [10] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [11] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [12] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [13] 刘娟, 胡锐, 范志强, 张振华. 过渡金属掺杂的扶手椅型氮化硼纳米带的磁电子学特性及力-磁耦合效应. 物理学报, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [14] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [15] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [16] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [17] 欧阳方平, 王晓军, 张华, 肖金, 陈灵娜, 徐慧. 扶手椅型石墨纳米带的双空位缺陷效应研究. 物理学报, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [18] 贾婉丽, 纪卫莉, 施 卫. 半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟. 物理学报, 2007, 56(4): 2042-2046. doi: 10.7498/aps.56.2042
    [19] 范军峰, 张 宁. Tb1-xDyxFe2-y-Fe掺杂BaTiO3多层膜中的磁电耦合. 物理学报, 2007, 56(10): 6056-6060. doi: 10.7498/aps.56.6056
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  6858
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-16
  • 修回日期:  2019-09-14
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回