搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料/铁电异质结构的研究进展

王慧 徐萌 郑仁奎

引用本文:
Citation:

二维材料/铁电异质结构的研究进展

王慧, 徐萌, 郑仁奎

Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures

Wang Hui, Xu Meng, Zheng Ren-Kui
PDF
HTML
导出引用
  • 二维材料是一类具有原子层厚度的层状材料, 拥有独特的电学、磁学、光学和力学性能. 以石墨烯和过渡金属硫族化合物为代表的二维材料展现出迁移率高、能带可调、可见光透过率高等特点, 是近年来微纳科学领域的前沿热点. 将二维材料与各种功能材料, 如SiO2绝缘体、半导体、金属、有机化合物等结合, 可以深化和拓宽二维材料的基础研究和应用. 其中, 铁电材料因具有自发极化、高介电常数、高压电系数等优点吸引了众多研究者的目光. 二维/铁电复合材料很好地兼顾了二者的优点, 不仅包含了磁电耦合效应、铁电场效应、晶格应变效应、隧穿效应、光电效应、光致发光效应等丰富的物理现象, 而且在多态存储器、隧穿晶体管、光电二极管、太阳能电池、超级电容器、热释电红外探测器等器件中有广阔的应用前景, 引起了学术界的广泛关注. 本文选取典型的二维/铁电复合材料, 重点介绍了这类材料界面处的物理机制、材料的性能以及应用前景, 并对二维/铁电复合材料的研究进行了展望.
    With the rapid development of microelectronic integration technology, the miniaturization, integration and multifunction of electronic devices are becoming a general trend. Two-dimensional materials are a class of layered material with atomic layer thickness, and have unique electrical, magnetic, optical and mechanical properties. The co-existence of the weak van der Waals force between layers and the strong covalent bonding within layers makes the two-dimensional material very suitable for the miniature design of new-generation multifunctional electronic devices. Two-dimensional materials, represented by graphene and transition metal chalcogenides, exhibit high mobility, adjustable energy band and high visible light transmittance, and thus having become the frontier hotspots in the field of micro-nanoscience in recent years. Synergy between two-dimensional materials and various functional materials such as SiO2 insulator, semiconductor, metal and organic compound may lead to new properties and device applications, thus can deepen and expand the basic research and application of two-dimensional materials. Among them, ferroelectric materials have received much attention because of their spontaneous polarizations, high dielectric constants, and high piezoelectric coefficients. The two-dimensional ferroelectric composites well have the advantages of the two, i.e. they not only contain a variety of rich phenomena such as the magnetoelectric coupling effect, ferroelectric field effect and lattice strain effect, tunneling effect, photoelectric effect, and photoluminescence effect, but also have broad applications in devices such as multi-state memories, tunneling transistors, photoelectric diodes, solar cells, super capacitors, and pyroelectric infrared detectors, which have attracted wide concern from academia and industry. To better understand the combination of two-dimensional thin films with ferroelectric substrates and provide a holistic view, we review the researches of several typical two-dimensional film/ferroelectrics heterostructures in this article. First, two-dimensional materials and ferroelectric materials are introduced. Then, the physical mechanism at the interface is briefly illustrated. After that, several typical two-dimensional film/ferroelectrics heterostructures are mainly introduced. The ferroelectric materials including Pb(Zr1–xTix)O3, (1–x)PbMg1/3Nb2/3O3xPbTiO3, P(VDF-TrFE), are mainly summarized, and other ferroelectric materials such as P(VDF-TrFE-CFE), BaTiO3, BiFeO3, PbTiO3, CuInP2S6, HfO2 are briefly involved. The future research emphasis of the two-dimensional materials/ferroelectrics composites is also suggested at the end of the article. This review will present a significant reference to the future design of miniature and multifunctional devices.
      通信作者: 郑仁奎, zrk@ustc.edu
    • 基金项目: 国家自然科学基金(批准号: 51572278, 11974155)资助的课题
      Corresponding author: Zheng Ren-Kui, zrk@ustc.edu
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51572278, 11974155)
    [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [3]

    Li L, Chen Z, Hu Y, Wang X W, Zhang T, Chen W, Wang Q B 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [4]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [5]

    Lü L, Zhuge F, Xie F, Xiong X J, Zhang Q F, Zhang N, Huang Y, Zhai T Y 2019 Nat. Commun. 10 3331Google Scholar

    [6]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Topsakal M, Aktürk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [9]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [10]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 9439Google Scholar

    [11]

    Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [12]

    Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q, Sun N X 2016 NPG Asia Mater. 8 e 31 6Google Scholar

    [13]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [14]

    Yang Y J, Yang M M, Luo Z L, Huang H, Wang H, Bao J, Hu C, Pan G, Yao Y, Liu Y, Li X G, Zhang S, Zhao Y G, Gao C 2012 Appl. Phys. Lett. 100 043506Google Scholar

    [15]

    Yan J M, Xu M, Chen T W, Yang M M, Liu F, Wang H, Guo L, Xu Z X, Fan F Y, Gao G Y, Dong S N, Li X G, Luo H S, Zhao W Y, Zheng R K 2019 Phys. Rev. Appl. 11 034037Google Scholar

    [16]

    Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H 2013 J. Phys. Chem. C 117 13747Google Scholar

    [17]

    Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stomer H L, Kim P 2007 Phys. Rev. Lett. 99 246803Google Scholar

    [18]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [19]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nat. Nanotech. 3 206Google Scholar

    [20]

    Hong X, Posadas A, Zou K, Ahn C H, Zhu J 2009 Phys. Rev. Lett. 102 136804Google Scholar

    [21]

    Hong X, Hoffman J, Posadas A, Zhu K, Ahn C H, Zhu J 2010 Appl. Phys. Lett. 97 033114Google Scholar

    [22]

    Zheng Y, Ni G X, Bae S, Cong C X, Kahya O, Toh C T, Kim H R, Im D, Yu T, Ahn J H, Hong B H, Özyimaz B 2011 Europhys. Lett. 93 17002Google Scholar

    [23]

    Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M, Zeng C, Xu G, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L 2011 Appl. Phys. Lett. 99 042109Google Scholar

    [24]

    Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotech. 24 475202Google Scholar

    [25]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [26]

    Zhang X W, Xie D, Xu J, Zhao H, Zhang C, Sun Y, Zhao Y, Feng T, Li G, Ren T 2014 12th IEEE International Conference on Solid-State and Intergrated Circuit Technology Guilin, China, Oct 28−31, 2014 p978

    [27]

    Zhang X W, Xie D, Xu J L, Zhang C, Sun Y L, Zhao Y F, Li X, Li X M, Zhu H W, Chen H M, Chang T C 2015 Carbon 93 384Google Scholar

    [28]

    Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar

    [29]

    Rogers S P, Xu R, Pandya S, Martin L W, Shim M 2017 J. Phys. Chem. C 121 7542Google Scholar

    [30]

    Fang B J, Ding C L, Wu J, Du Q B, Ding J N, Zhao X Y, Xu H Q, Luo H S 2012 Eur. Phys. J. Appl. Phys. 57 30101Google Scholar

    [31]

    Liu L, Li X, Wu X, Wang Y, Di W, Lin D, Zhao X, Luo H, Neumann N 2009 Appl. Phys. Lett. 95 192903Google Scholar

    [32]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [33]

    Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt O G 2012 Nano Lett. 10 3453Google Scholar

    [34]

    Jie W J, Hui Y Y, Zhang Y, Lau S P, Hao J H 2013 Appl. Phys. Lett. 102 223112Google Scholar

    [35]

    Jie W J, Hao J H 2018 Nanoscale 10 328Google Scholar

    [36]

    Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar

    [37]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651Google Scholar

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [39]

    Wang L, Luo J, Chen Y, Lin L, Huang X, Xue H, Gao J 2019 ACS Appl. Mater. Interface 11 17774Google Scholar

    [40]

    Zhao X, Papageorgiou D G, Zhu L Y, Ding F, Young R J 2019 Nanoscale 11 14339Google Scholar

    [41]

    Zhou M Q, Kang Z X, Zhu S M 2019 Nanotechnology 30 395701Google Scholar

    [42]

    Zheng Y, Ni G X, Toh C T, Zeng M G, Chen S T, Yao K, Özyilmaz B 2009 Appl. Phys. Lett. 94 163505Google Scholar

    [43]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [44]

    Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K, Özyilmaz B 2012 ACS Nano 6 3935Google Scholar

    [45]

    Wang X D, Tang M H, Chen Y, Wu G, Huang H, Zhao X, Tian B, Wang J, Sun S, Shen H, Lin T, Sun J, Meng X, Chu J 2016 Opt. Quant. Electron. 48 345Google Scholar

    [46]

    Wang X, Chen Y, Wu G, Wang J, Tian B, Sun S, Shen H, Lin T, Hu W, Kang T, Tang M, Xiao Y, Sun J, Meng X, Chu J 2018 Nanotechnology 29 134002Google Scholar

    [47]

    Bae S H, Kahya O, Sharma B K, Kwoon J, Cho H J, Özyilmaz B, Ahn J H 2013 ACS Nano 7 3130Google Scholar

    [48]

    Park S, Kim Y, Jung H, Park J Y, Lee N, Seo Y 2017 Sci. Rep. 7 17290Google Scholar

    [49]

    Kim S, Dong Y, Hossain M M, Gorman S, Towfeeq I, Gajula D, Childress A, Rao A M, Koley G 2019 ACS Appl. Mater. Interface 11 16006Google Scholar

    [50]

    Silibin M V, Bystrov V S, Karpinsky D V, Nasani N, Goncalves G, Gavrilin I M, Solnyshkin A V, Marques P A A P, Singh B, Bdikin 2017 Appl. Surf. Sci. 421 42Google Scholar

    [51]

    Yaqoob U, Iftekhar Uddin A S M, Chung G S 2018 Compos. Part B 136 92Google Scholar

    [52]

    Chen Y, Zhang L, Liu J, Lin X, Xu W, Yue Y, Shen Q D 2019 Carbon 144 15Google Scholar

    [53]

    Garain S, Jana S, Sinha T K, Mandal D 2016 ACS Appl. Mater. Interfaces 8 4532Google Scholar

    [54]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [55]

    Lu P, Wu X j, Guo W, Zeng X C 2012 Phys. Chem. Chem. Phys. 14 13035Google Scholar

    [56]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [57]

    Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X, Zhu H W 2015 IEEE Electron. Device Lett. 36 784Google Scholar

    [58]

    Zhou C J, Wang X S, Raju S, Lin Z Y, Villaroman D, Huang B L, Chan H L W, Chan M, Chai Y 2015 Nanoscale 7 8695Google Scholar

    [59]

    Lu Z Y, Serrao C, Khan A I, You L, Wong J C, Ye Y, Zhu H Y, Zhang X, Salahuddin S 2017 Appl. Phys. Lett. 111 023104Google Scholar

    [60]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [61]

    Sun Y L, Xie D, Zhang X W, Xu J L, Li X M, Li X, Dai R X, Li X, Li P, Gao X S, Zhu H W 2017 Nanotechnology 28 045204Google Scholar

    [62]

    Li T, Gao L M, Xie H Q, Ye L Q, Yang W D, Liu Q L, Li K 2018 Mater. Res. Express 5 066308Google Scholar

    [63]

    Lipatov A, Sharma P, Gruverman A, Sinitskii A 2015 ACS Nano 9 8089Google Scholar

    [64]

    Lipatov A, Li T, Vorobeva N S, Sinitskii A, Gruverman A 2019 Nano Lett. 19 3194Google Scholar

    [65]

    Ko C, Lee Y, Chen Y, Suh J, Fu D, Suslu A, Lee S, Clarkson J D, Choe H S, Tongay S, Ramesh R, Wu J 2016 Adv. Mater. 28 2923Google Scholar

    [66]

    Li C H, McCreary K M, Jonker B T 2016 ACS Omega 1 1075Google Scholar

    [67]

    Fang H J, Lin Z Y, Wang X S, Tang C Y, Chen Y, Zhang F, Chai Y, Li Q, Yan Q F, Chan H L W, Dai J Y 2015 Opt. Express 23 251881Google Scholar

    [68]

    Liu Y D, Guo J M, Yu A F, Zhang Y, Kou J Z, Zhang K, Wen R M, Zhang Y, Zhai J Y, Wang Z L 2018 Adv. Mater. 30 1704524Google Scholar

    [69]

    Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S, Im S 2012 Small 8 3111Google Scholar

    [70]

    Radisavljevic B, Radnovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [71]

    Kobayashi T, Hori N, Nakajima T, Kawae T 2016 Appl. Phys. Lett. 108 132903Google Scholar

    [72]

    Liu L, Wang X D, Han L, Tian B, Chen Y, Wu G L, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J L, Duan C G, Wang J L, Meng X J, Chu J H 2017 AIP Adv. 7 065121Google Scholar

    [73]

    Liu X Q, Liang R R, Gao G Y, Pan C F, Jiang C S, Xu Q, Luo J, Zou X M, Yang Z Y, Liao L, Wang Z L 2018 Adv. Mater. 30 1800932Google Scholar

    [74]

    Wang X D, Liu C, Chen Y, Wu G J, Yan X, Huang H, Wang Peng, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2 D Mater. 4 025036Google Scholar

    [75]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X, Guo N, Sun H S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [76]

    Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S T, Bian L, Sun J, Meng X, Chu J 2016 Nanotechnology 27 364002Google Scholar

    [77]

    Yin L, Wang Z X, Wang F, Xu K, Cheng R Q, Wen Y, Li J, He J 2017 Appl. Phys. Lett. 110 123106Google Scholar

    [78]

    Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J H, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Appl. Mater. Interfaces 8 32083Google Scholar

    [79]

    Yin C, Wang X D, Chen Y, Li T, Sun S, Shen H, Du P, Sun J, Meng X, Chu J, Wong H F, Leung C W, Wang Z, Wang J 2018 Nanoscale 10 1727Google Scholar

    [80]

    Nguyen A, Sharma P, Scott T, Preciado E, Klee V, Sun D, Lu I H, Barroso D, Kim S, Shur V Y, Akhmatkhanov A R, Gryveman A, Bartels L, Dowben P A 2015 Nano Lett. 15 3364Google Scholar

    [81]

    Wen B, Zhu Y, Yudistira D, Boes A, Zhang L, Yidirim T, Liu B, Yan H, Sun X, Zhou Y, Xue Y, Zhang Y, Fu L, Mitchell A, Zhang H, Lu Y 2019 ACS Nano 13 5335Google Scholar

    [82]

    Jin H, Yoon W Y, Jo W 2017 Appl. Phys. Lett. 110 191601Google Scholar

    [83]

    Shin H W, Son J Y 2018 Electron. Mater. Lett. 14 59Google Scholar

    [84]

    Li T, Lipatov A, Lu H, Lee H, Lee J W, Torun E, Wirtz L, Eom C B, Íñigue J, Sinitskii A, Gruverman A 2018 Nat. Comm. 9 3344Google Scholar

    [85]

    Li T, Sharma P, Lipatov A, Lee H, Lee J W, Zhuravlev M Y, Paudel T R, Genenko Y A, Eom C B, Tsymbal E Y, Sinitskii A, Gruveman A 2017 Nano Lett. 17 922Google Scholar

    [86]

    Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y, Zhen L 2018 Nanoscale 10 23080Google Scholar

    [87]

    Shin H W, Son J Y 2019 J. Alloy. Compd. 792 673Google Scholar

    [88]

    Si M W, Liao P Y, Qiu G, Duan Y, Ye P D 2018 ACS Nano 12 6700Google Scholar

    [89]

    Si M W, Jiang C S, Chung W, Du Y C, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar

    [90]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [91]

    Wang M, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [92]

    Zhao X W, Dong S N, Gao G Y, Xu Z X, Xu M, Yan J M, Zhao W Y, Liu Y K, Yan S Y, Zhang J X, Wang Y, Lu H Z, Li X G, Furdya J K, Luo H S, Zheng R K 2018 Quant. Mater. 3 52Google Scholar

    [93]

    Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W, Zheng R K 2019 ACS Appl. Mater. Interfaces 11 9548Google Scholar

    [94]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Technol. 9 372Google Scholar

    [95]

    Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q, Lu Y 2014 ACS Nano 8 9590Google Scholar

    [96]

    Lee Y T, Kwoon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang H K, Im S 2015 ACS Nano 9 10394Google Scholar

    [97]

    Xie L, Chen X, Dong Z, Yu Q, Zhao X X, Yuan G L, Zeng Z M, Wang Y J, Zhang K 2019 Adv. Electron. Mater. 5 1900458Google Scholar

  • 图 1  结构示意图 (a) 中间插层的二维材料[10]; (b) 石墨烯/MoS2/PMN-PT异质结[11]; (c) MoS2/P(VDF-TrFE)/SiO2/Si异质结[5]

    Fig. 1.  The schematic diagrams: (a) 2D Materials with intercalation[10]; (b) graphene/MoS2/PMN-PT heterostructure[11]; (c) MoS2/P(VDF-TrFE)/SiO2/Si heterostructure[5].

    图 2  (a) PMN-PT未被极化时具有8个自发极化方向: r1+, r2+, r3+, r4+, r1, r2, r3, r4[12]; (b) PMN-PT(001)单晶的应变-电场曲线[13]; (c) 不同应变状态下, MoS2的光致发光谱[11]; (d) 不同外加电场下, PMN-PT(011)单晶的应变-电场曲线[15]

    Fig. 2.  (a) The eight possible polarization directions for an unpoled PMN-PT single crystal: r1+, r2+, r3+, r4+, r1, r2, r3, r4[12]; (b) εxxE curves for PMN-PT(001) single crystals[13]; (c) photoluminescence spectra of the MoS2 under various strains[11]; (d) εxxE curves for PMN-PT(011) single crystals[15].

    图 3  (a) PMN-PT铁电单晶衬底的极化-电场(P-E)曲线, 及外加电场下石墨烯/PMN-PT铁电场效应晶体管的界面电荷效应示意图[16]; (b) 石墨烯/PMN-PT铁电场效应晶体管的IdsVg曲线[16]

    Fig. 3.  (a) Polarization-Electric field (P-E) hysteresis loop of PMN-PT substrate, and schematic diagrams of interface charge effects in graphene/PMN-PT FeFET[16]; (b) the IdsVg curves of graphene on PMN-PT[16].

    图 4  (a) 石墨烯/PZT/STO异质结的示意图[20]; (b) 300 nm PZT上的多层石墨烯AFM图[21]; (c) 不同栅压走向下, 石墨烯/PZT FeFET的电阻率ρ随栅压Vg的变化曲线[21]

    Fig. 4.  (a) Schematic of the graphene/PZT/STO heterostructure[20]; (b) AFM image of a multilayer graphene sheet on a 300 nm PZT film[21]; (c) the channel resistivity of graphene/PZT FeFET as a function of the gate voltage with different memory operation[21].

    图 5  (a) 机械剥离-石墨烯/PZT FeFET的IDS-VG曲线[23]; (b) CVD-石墨烯/PZT FeFET的IDS-VG曲线[23]; (c) VDS = 50 mV时, 石墨烯/PZT FeFET中的IDS-VG曲线[25]; (d) 不同栅压下, 真空和空气中分别测得的IDS-VG曲线[25]

    Fig. 5.  (a) IDS-VG characteristics of the exfoliated-graphene/PZT FeFET[23]; (b) IDS-VG characteristics of the CVD-graphene/PZT FeFET[23]; (c) IDS-VG of the graphene/PZT FeFET under a drain voltage at 50 mV[25]; (d) drain current as a function of gate voltage of graphene/PZT FeFET in air and vacuum, respectively[25].

    图 6  (a) PZT处于不同极化状态时, 石墨烯/PZT的IDS-VG曲线[28]; (b) 在施加VG = –6 V和VG = 6 V的擦写电压后, 石墨烯/PZT FET分别处于“ON”态和“OFF”时的漏极电流随时间的变化曲线[28]; (c) 石墨烯/PZT FET结构示意图[29]; (d) 在PZT薄膜翻转为向上和向下的极化状态后, 分别在真空中放置250 s和24 h后测得的Id-VG曲线[29]

    Fig. 6.  (a) Scheme of the electrical measurements of graphene/PZT FeFETs at different polarization state of PZT[28]; (b) after application of the write (VG = –6 V) or erase (VG = +6 V) voltages, the ON and OFF drain–source currents at the read voltage (VG = 0) and an auxiliary pulse (VG = –1.25 V) were measured as a function of time[28]; (c) schematic device structure of the graphene/PZT FeFET[29]; (d) Id-VG characteristics measured in vacuum 250 s and 24 h after switching for both the UP and DOWN polarization states[29].

    图 7  (a)对石墨烯/PMN-PT施加电场的示意图[33]; (b) 石墨烯的D, G, 2D和2D’峰位随面内应变的变化曲线[33]; (c) 石墨烯/PMN-PT异质结构示意图[34]; (d) 不同外场下PMN-PT(002)峰的XRD图[34]; (e) 不同外场下石墨烯的2D拉曼峰图[34]

    Fig. 7.  (a) Schematic of the electro-mechanical device used to apply in-plane biaxial strain to the graphene[33]; (b) D, G, 2D and 2D’ peaks plotted as a function of the biaxial strain ε||[33]; (c) schematic of graphene/PMNPT heterostructure[34]; (d) the PMN-PT (002) peaks of XRD 2θ scanning patterns with different bias voltage[34]; (e) 2D peaks of graphene under different bias voltage[34].

    图 8  (a) 石墨烯/PMN-PT FeFET的Ids-Vg曲线[16]; (b) 石墨烯的载流子浓度随栅压的变化曲线[35]; (c) 石墨烯/h-BN/PMN-PT FET示意图[36]; (d) 不同栅压范围下的Ids-Vg曲线[36]

    Fig. 8.  (a) The Ids-Vg curves of graphene on PMN-PT[16]; (b) charge carrier density of graphene on PMN-PT as a function of the gate voltage[35]; (c) schematic diagrams of the graphene/h-BN/PMN-PT FET[36]; (d) Ids-Vg curves of graphene at different gate-voltage sweep ranges[36].

    图 9  (a) 石墨烯/P(VDF-TrFE)的电位移D和P(VDF-TrFE)的电位移D’随外加电场的变化曲线[42]; (b) 石墨烯/P(VDF-TrFE)的电阻持久性能[43]; (c) 石墨烯/P(VDF-TrFE)柔性透明导电器件光学照片[44]; (d) 石墨烯/P(VDF-TrFE)的IsdItg随栅极电压的变化曲线[46]

    Fig. 9.  (a) The electric displacement field D of the graphene/P(VDF-TrFE) FeFET and D’ of P(VDF-TrFE) thin film as a function of the applied electric field[42]; (b) the resistance endurance property of the graphene/P(VDF-TrFE) FeFET[43]; (c) optical image of the flexible transparent graphene/P(VDF-TrFE) FeFET device[44]; (d) Isd and Itg vs Vtg curves of the graphene/P(VDF-TrFE) FeFET[46].

    图 10  (a) 基于石墨烯/P(VDF-TrFE)/石墨烯复合结构的声压器件和测试回路照片[47]; (b) 基于石墨烯/P(VDF-TrFE)/石墨烯复合结构的声压驱动器和纳米发电机的示意图[47]; (c) 基于P(VDF-TrFE)/石墨烯复合结构的发电机和话筒的示意图和照片[48]; (d) 基于P(VDF-TrFE)/石墨烯复合结构的压力测试装置[49]; (e) 当被粘贴在手上时P(VDF-TrFE)/PMN-PT/GO薄膜的短路电流[51]; (f) 用PFM探针在GO/P(VDF-TrFE)上写入和读取数据的示意图[52]

    Fig. 10.  (a) Photograph of the graphene/P(VDF-TrFE)/graphene based acoustic device and the measurement circuit[47]; (b) schematic depiction showing graphene/P(VDF-TrFE)/graphene-based device can work as an actuator as well as a nanogenerator[47]; (c) schematics and photograph of graphene/PVDF/graphene based generator and loudspeaker[48]; (d) photographic image of the pressure measurement setup showing the pressurized gas inlet, the sensor mounting, and the data acquisition system[49]; (e) short-circuit current of the P(VDF-TrFE)/PMN-PT/GO film when attached on the human hand[51]; (f) a schematic of data writing and reading on GO/P(VDF-TrFE) Multilayer film by a PFM tip[52].

    图 11  (a) 以PZT为背栅的MoS2 FET示意图[57]; (b) MoS2/PZT FET的转移特性曲线, 插图为存储窗口随最大扫描电压的变化曲线[57]; (c) 不同表面粗糙度的MoS2/PZT FET转移特性曲线[59]; (d) MoS2/PZT FET在不同温度下的转移特性曲线[61]

    Fig. 11.  (a) Schematic diagram of the PZT back gated MoS2 FeFET[57]; (b) the transfer curves of MoS2/PZT FET. Memory window variation with increasing VG sweep range as shown in the inset[57]; (c) the transfer characteristics of MoS2 transistors fabricated on PZT films with different surface qualities[59]; (d) the Ids-Vgs curves of MoS2/PZT FETs under different temperatures rising from 300 to 380 K and Vgmax at 8 V[61].

    图 12  (a) 同一个MoS2/PZT FeFET在加栅压的同时和加栅压静置5 min后的IDS-VG曲线[63]; (b) 光照对FeFET器件开关持续能力的影响[63]; (c) 以向下的铁电畴为栅极的MoS2-PZT FeFET的PFM相位图[64]; (d) 不同数量导电通道的IDS-VDS曲线[64]

    Fig. 12.  (a) IDS-VG characteristics for the same MoS2/PZT FeFET measured while VG was applied and 5 min after the corresponding gate voltages were applied, respectively[63]; (b) effect of light illumination on the retention properties of the FeFET[63]; (c) PFM phase images of a MoS2-PZT FeFET with one and three conductive paths gated by the domains with the downward polarization[64]; (d) IDS-VDS curves for different numbers of conductive paths[64].

    图 13  (a) 2D/PZT FeFET的结构示意图[65]; (b) PZT不同极化态对WSe2 PL光谱的影响[65]; (c, d) PZT不同极化态下, WSe2的PL发光分布图[65]; (e) PZT不同极化态下, WS2的PL发光分布图[66]; (f) PZT不同极化态下, WS2的PL光谱及拟合曲线[66]

    Fig. 13.  (a) Device schematic of the 2D TMD/PZT heterostructure[65]; (b) effect of different polarization state for PZT on the PL spectra of WSe2[65]; (c, d) the maps of integrated PL intensity under down- and up-polarized states, respectively[64]; (e) PL peak intensity map obtained from the WS2 monolayer over a 30 × 30 μm2 area under different polarized states[66]; (f) raw PL spectra (solid black line) and fits (dashed green line) using two Lorentzians centered at 2.01 eV (red line) and 1.99 eV (blue line)[66].

    图 14  (a) MoS2/PMN-PT的结构示意图[11]; (b) 不同应力作用下MoS2的光致发光光谱[11]; (c) 不同应力作用下MoS2的能带示意图[11]; (d) PMN-PT/MoS2 FET的结构示意图[67]; (e) 无栅极电压时, PMN-PT/MoS2 FET在不同强度光照下的伏安特性曲线[67]; (f) PMN-PT/MoS2 FET的沟道电流随红外光照开/关的响应曲线[67]

    Fig. 14.  (a) Schematic diagram of MoS2/PMN-PT composite[11]; (b) in-situ photoluminescence (PL) spectra of MoS2/PMN-PT composite under different strain states[11]; (c) calculated band structure of trilayer MoS2 as a function of the strain[11]; (d) schematic of MoS2/PMN-PT FET[67]; (e) IdsVds curves of MoS2/PMN-PT FET under different light illumination with gate voltage VG = 0 V[67]; (f) the time-resolved photocurrent in response to IR on/off at an irradiance of 6 mW/mm2[67].

    图 15  (a) 磁性、半导体性、压电性相互耦合示意图[68]; (b) MoS2基MIPG-FET的3D示意图[68]; (c) PMN-PT正向极化态下, MoS2基MIPG-FET对H = 33 mT的瞬态响应[68]; (d) PMN-PT负向极化态下, MoS2基MIPG-FET对H = 42 mT的瞬态响应[68]

    Fig. 15.  (a) Schematic showing the three-phase coupling among magnetism, semiconductor, and piezoelectricity[68]; (b) 3D schematic illustration of an MoS2-based MIPG-FET[68]; (c) transient response of the MIPG-FET at H = 33 mT at Pr+ state[68]; (d) transient response of the MIPG-FET at H = 42 mT at Pr state[68].

    图 16  (a) MoS2基FET的3D模型图[69]; (b) 亚阈值摆幅和电导随沟道长度的变化曲线[73]; (c) 以P(VDF-TrFE)为顶栅的MoSe2基FeFET的3D模型图[74]; (b) MoSe2基FeFET在写入和擦除状态下的持久性能[74]

    Fig. 16.  (a) Schematic 3D top-view of the MoS2-FET[69]; (b) Detailed plots of SS and gm as a function of Lch[73]; (c) 3D schematic diagram of the P(VDF-TrFE) top gated MoSe2 FeFET[74]; (d) retention performance of this device at the write and erase states[74].

    图 17  (a) P(VDF-TrFE)顶栅MoS2光电FET在光照下的3D模型图[75]; (b) P(VDF-TrFE)处于不同极化状态时, MoS2光电FET的光开关行为[75]; (c) 以P(VDF-TrFE)顶栅并中插HfO2薄膜的MoTe2光电FET示意图[77]; (d) 在黑暗及不同光照强度(520−1550 nm)下, In2Se3光电FET的伏安特性曲线[76]

    Fig. 17.  (a) 3D schematic diagram of the P(VDF-TrFE) top gated MoS2 phtodetector with light beam[75]; (b) photoswitching behavior of ferroelectric polarization gating triple-layer MoS2 photodetector at three states[75]; (c) the schematic diagram of back-gate MoTe2 FET in which HfO2 of 30 nm is deposited on MoTe2 before coating P(VDF-TrFE) polymer[77]; (d) drain-source characteristics of the In2Se3 phtodetector in the dark and under different illuminating light wavelength (520−1550 nm)[76].

    图 18  (a) 单层薄膜在LiNbO3铁电畴上择优生长的光学照片和在单极化域上的双层[80]; (b) MoSe2和(c) WSe2的光致发光分布图[81]; (d) 在MoS2/BaTiO3/SrRuO3上的测试示意图[85]; (e−f) MoS2/BaTiO3/SrRuO3在紫外光照前后的PFM相图[85]

    Fig. 18.  (a) The optical micrograph shows preferential growth of single-layer MoS2 on LiNbO3 domains[80]; PL mapping of exfoliated monolayer (b) MoSe2 and (c) WSe2 on a single polarized domain. The gold dashed line indicates one single dipole[81]; (d) a sketch of the experiment geometry in MoS2/BaTiO3/SrRuO3 junctions[85]; (e)−(f) PFM phase images of MoS2/BaTiO3/SrRuO3 junctions acquired in the dark before and after UV illumination[85].

    图 19  (a) PMN-PT衬底分别处于Pr+, Pr态时, CBS薄膜的电阻R随温度T的变化曲线, 插图: CBS薄膜的载流子浓度随温度T的变化曲线[92]; (b) PMN-PT衬底极化翻转引起的CBS薄膜费米能级移动的示意图[92]; (c) P(VDF-TrFE)/BP/MoS2/SiO2/Si结构FeFET示意图[94]; (d) 在BP/PZT/LNO/SiO2/Si结构的FeFET中光电存储原理图[95]; (e) 在BP/PZT/LNO/SiO2/Si结构存储器中的“电写光读”动态循环曲线[95]

    Fig. 19.  (a) The resistance R as a function of the temperature T for the CBS films at Pr+ state and Pr state, respectively[92]; (b) schematic band diagrams of the Fermi level shift induced by polarization Switching[92]; (c) schematic of dual-gated P(VDF-TrFE)/BP/MoS2/SiO2/Si FeFET[94]; (d) schematic illustration of the photoelectric memory in FeFET with BP/PZT heterostructure fabricated on LNO/SiO2/Si substrate[95]; (e) dynamic cycles of the “electrical writing-optical reading” process of the BP/PZT/LNO/SiO2/Si memory[95]

  • [1]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [2]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768Google Scholar

    [3]

    Li L, Chen Z, Hu Y, Wang X W, Zhang T, Chen W, Wang Q B 2013 J. Am. Chem. Soc. 135 1213Google Scholar

    [4]

    Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [5]

    Lü L, Zhuge F, Xie F, Xiong X J, Zhang Q F, Zhang N, Huang Y, Zhai T Y 2019 Nat. Commun. 10 3331Google Scholar

    [6]

    Eswaraiah V, Zeng Q S, Long Y, Liu Z 2016 Small 12 3480Google Scholar

    [7]

    Liu H, Neal A T, Zhu Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [8]

    Topsakal M, Aktürk E, Ciraci S 2009 Phys. Rev. B 79 115442Google Scholar

    [9]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503Google Scholar

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503Google Scholar

    [10]

    Novoselov K S, Mishchenko A, Carvalho A, Neto A H C 2016 Science 353 9439Google Scholar

    [11]

    Hui Y Y, Liu X, Jie W, Chan N Y, Hao J, Hsu Y T, Li L J, Guo W, Lau S P 2013 ACS Nano 7 7126Google Scholar

    [12]

    Liu M, Nan T X, Hu J M, Zhao S S, Zhou Z, Wang C Y, Jiang Z D, Ren W, Ye Z G, Chen L Q, Sun N X 2016 NPG Asia Mater. 8 e 31 6Google Scholar

    [13]

    徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光 2018 物理学报 67 157506Google Scholar

    Xu M, Yan J M, Xu Z X, Guo L, Zheng R K, Li X G 2018 Acta Phys. Sin. 67 157506Google Scholar

    [14]

    Yang Y J, Yang M M, Luo Z L, Huang H, Wang H, Bao J, Hu C, Pan G, Yao Y, Liu Y, Li X G, Zhang S, Zhao Y G, Gao C 2012 Appl. Phys. Lett. 100 043506Google Scholar

    [15]

    Yan J M, Xu M, Chen T W, Yang M M, Liu F, Wang H, Guo L, Xu Z X, Fan F Y, Gao G Y, Dong S N, Li X G, Luo H S, Zhao W Y, Zheng R K 2019 Phys. Rev. Appl. 11 034037Google Scholar

    [16]

    Jie W J, Hui Y Y, Chan N Y, Zhang Y, Lau S P, Hao J H 2013 J. Phys. Chem. C 117 13747Google Scholar

    [17]

    Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Sarma S D, Stomer H L, Kim P 2007 Phys. Rev. Lett. 99 246803Google Scholar

    [18]

    Fratini S, Guinea F 2008 Phys. Rev. B 77 195415Google Scholar

    [19]

    Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S 2008 Nat. Nanotech. 3 206Google Scholar

    [20]

    Hong X, Posadas A, Zou K, Ahn C H, Zhu J 2009 Phys. Rev. Lett. 102 136804Google Scholar

    [21]

    Hong X, Hoffman J, Posadas A, Zhu K, Ahn C H, Zhu J 2010 Appl. Phys. Lett. 97 033114Google Scholar

    [22]

    Zheng Y, Ni G X, Bae S, Cong C X, Kahya O, Toh C T, Kim H R, Im D, Yu T, Ahn J H, Hong B H, Özyimaz B 2011 Europhys. Lett. 93 17002Google Scholar

    [23]

    Song E B, Lian B, Kim S M, Lee S, Chung T K, Wang M, Zeng C, Xu G, Wong K, Zhou Y, Rasool H I, Seo D H, Chung H J, Heo J, Seo S, Wang K L 2011 Appl. Phys. Lett. 99 042109Google Scholar

    [24]

    Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotech. 24 475202Google Scholar

    [25]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [26]

    Zhang X W, Xie D, Xu J, Zhao H, Zhang C, Sun Y, Zhao Y, Feng T, Li G, Ren T 2014 12th IEEE International Conference on Solid-State and Intergrated Circuit Technology Guilin, China, Oct 28−31, 2014 p978

    [27]

    Zhang X W, Xie D, Xu J L, Zhang C, Sun Y L, Zhao Y F, Li X, Li X M, Zhu H W, Chen H M, Chang T C 2015 Carbon 93 384Google Scholar

    [28]

    Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar

    [29]

    Rogers S P, Xu R, Pandya S, Martin L W, Shim M 2017 J. Phys. Chem. C 121 7542Google Scholar

    [30]

    Fang B J, Ding C L, Wu J, Du Q B, Ding J N, Zhao X Y, Xu H Q, Luo H S 2012 Eur. Phys. J. Appl. Phys. 57 30101Google Scholar

    [31]

    Liu L, Li X, Wu X, Wang Y, Di W, Lin D, Zhao X, Luo H, Neumann N 2009 Appl. Phys. Lett. 95 192903Google Scholar

    [32]

    Lee H J, Zhang S, Luo J, Li F, Shrout T R 2010 Adv. Funct. Mater. 20 3154Google Scholar

    [33]

    Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A, Schmidt O G 2012 Nano Lett. 10 3453Google Scholar

    [34]

    Jie W J, Hui Y Y, Zhang Y, Lau S P, Hao J H 2013 Appl. Phys. Lett. 102 223112Google Scholar

    [35]

    Jie W J, Hao J H 2018 Nanoscale 10 328Google Scholar

    [36]

    Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar

    [37]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651Google Scholar

    [38]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [39]

    Wang L, Luo J, Chen Y, Lin L, Huang X, Xue H, Gao J 2019 ACS Appl. Mater. Interface 11 17774Google Scholar

    [40]

    Zhao X, Papageorgiou D G, Zhu L Y, Ding F, Young R J 2019 Nanoscale 11 14339Google Scholar

    [41]

    Zhou M Q, Kang Z X, Zhu S M 2019 Nanotechnology 30 395701Google Scholar

    [42]

    Zheng Y, Ni G X, Toh C T, Zeng M G, Chen S T, Yao K, Özyilmaz B 2009 Appl. Phys. Lett. 94 163505Google Scholar

    [43]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [44]

    Ni G X, Zheng Y, Bae S, Tan C Y, Kahya O, Wu J, Hong B H, Yao K, Özyilmaz B 2012 ACS Nano 6 3935Google Scholar

    [45]

    Wang X D, Tang M H, Chen Y, Wu G, Huang H, Zhao X, Tian B, Wang J, Sun S, Shen H, Lin T, Sun J, Meng X, Chu J 2016 Opt. Quant. Electron. 48 345Google Scholar

    [46]

    Wang X, Chen Y, Wu G, Wang J, Tian B, Sun S, Shen H, Lin T, Hu W, Kang T, Tang M, Xiao Y, Sun J, Meng X, Chu J 2018 Nanotechnology 29 134002Google Scholar

    [47]

    Bae S H, Kahya O, Sharma B K, Kwoon J, Cho H J, Özyilmaz B, Ahn J H 2013 ACS Nano 7 3130Google Scholar

    [48]

    Park S, Kim Y, Jung H, Park J Y, Lee N, Seo Y 2017 Sci. Rep. 7 17290Google Scholar

    [49]

    Kim S, Dong Y, Hossain M M, Gorman S, Towfeeq I, Gajula D, Childress A, Rao A M, Koley G 2019 ACS Appl. Mater. Interface 11 16006Google Scholar

    [50]

    Silibin M V, Bystrov V S, Karpinsky D V, Nasani N, Goncalves G, Gavrilin I M, Solnyshkin A V, Marques P A A P, Singh B, Bdikin 2017 Appl. Surf. Sci. 421 42Google Scholar

    [51]

    Yaqoob U, Iftekhar Uddin A S M, Chung G S 2018 Compos. Part B 136 92Google Scholar

    [52]

    Chen Y, Zhang L, Liu J, Lin X, Xu W, Yue Y, Shen Q D 2019 Carbon 144 15Google Scholar

    [53]

    Garain S, Jana S, Sinha T K, Mandal D 2016 ACS Appl. Mater. Interfaces 8 4532Google Scholar

    [54]

    Karan S K, Mandal D, Khatua B B 2015 Nanoscale 7 10655Google Scholar

    [55]

    Lu P, Wu X j, Guo W, Zeng X C 2012 Phys. Chem. Chem. Phys. 14 13035Google Scholar

    [56]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [57]

    Zhang X W, Xie D, Xu J L, Sun Y L, Li X, Zhang C, Dai R X, Zhao Y F, Li X M, Li X, Zhu H W 2015 IEEE Electron. Device Lett. 36 784Google Scholar

    [58]

    Zhou C J, Wang X S, Raju S, Lin Z Y, Villaroman D, Huang B L, Chan H L W, Chan M, Chai Y 2015 Nanoscale 7 8695Google Scholar

    [59]

    Lu Z Y, Serrao C, Khan A I, You L, Wong J C, Ye Y, Zhu H Y, Zhang X, Salahuddin S 2017 Appl. Phys. Lett. 111 023104Google Scholar

    [60]

    Ganapathi K L, Rath M, Rao M S R 2019 Semicond. Sci. Technol. 34 055016Google Scholar

    [61]

    Sun Y L, Xie D, Zhang X W, Xu J L, Li X M, Li X, Dai R X, Li X, Li P, Gao X S, Zhu H W 2017 Nanotechnology 28 045204Google Scholar

    [62]

    Li T, Gao L M, Xie H Q, Ye L Q, Yang W D, Liu Q L, Li K 2018 Mater. Res. Express 5 066308Google Scholar

    [63]

    Lipatov A, Sharma P, Gruverman A, Sinitskii A 2015 ACS Nano 9 8089Google Scholar

    [64]

    Lipatov A, Li T, Vorobeva N S, Sinitskii A, Gruverman A 2019 Nano Lett. 19 3194Google Scholar

    [65]

    Ko C, Lee Y, Chen Y, Suh J, Fu D, Suslu A, Lee S, Clarkson J D, Choe H S, Tongay S, Ramesh R, Wu J 2016 Adv. Mater. 28 2923Google Scholar

    [66]

    Li C H, McCreary K M, Jonker B T 2016 ACS Omega 1 1075Google Scholar

    [67]

    Fang H J, Lin Z Y, Wang X S, Tang C Y, Chen Y, Zhang F, Chai Y, Li Q, Yan Q F, Chan H L W, Dai J Y 2015 Opt. Express 23 251881Google Scholar

    [68]

    Liu Y D, Guo J M, Yu A F, Zhang Y, Kou J Z, Zhang K, Wen R M, Zhang Y, Zhai J Y, Wang Z L 2018 Adv. Mater. 30 1704524Google Scholar

    [69]

    Lee H S, Min S W, Park M K, Lee Y T, Jeon P J, Kim J H, Ryu S, Im S 2012 Small 8 3111Google Scholar

    [70]

    Radisavljevic B, Radnovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [71]

    Kobayashi T, Hori N, Nakajima T, Kawae T 2016 Appl. Phys. Lett. 108 132903Google Scholar

    [72]

    Liu L, Wang X D, Han L, Tian B, Chen Y, Wu G L, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J L, Duan C G, Wang J L, Meng X J, Chu J H 2017 AIP Adv. 7 065121Google Scholar

    [73]

    Liu X Q, Liang R R, Gao G Y, Pan C F, Jiang C S, Xu Q, Luo J, Zou X M, Yang Z Y, Liao L, Wang Z L 2018 Adv. Mater. 30 1800932Google Scholar

    [74]

    Wang X D, Liu C, Chen Y, Wu G J, Yan X, Huang H, Wang Peng, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Lin T, Hu W D, Tang M H, Zhou P, Wang J L, Sun J L, Meng X J, Chu J H, Li Z 2017 2 D Mater. 4 025036Google Scholar

    [75]

    Wang X D, Wang P, Wang J L, Hu W D, Zhou X, Guo N, Sun H S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [76]

    Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J, Zhang S T, Bian L, Sun J, Meng X, Chu J 2016 Nanotechnology 27 364002Google Scholar

    [77]

    Yin L, Wang Z X, Wang F, Xu K, Cheng R Q, Wen Y, Li J, He J 2017 Appl. Phys. Lett. 110 123106Google Scholar

    [78]

    Chen Y, Wang X D, Wang P, Huang H, Wu G J, Tian B, Hong Z C, Wang Y T, Sun S, Shen H, Wang J H, Hu W D, Sun J L, Meng X J, Chu J H 2016 ACS Appl. Mater. Interfaces 8 32083Google Scholar

    [79]

    Yin C, Wang X D, Chen Y, Li T, Sun S, Shen H, Du P, Sun J, Meng X, Chu J, Wong H F, Leung C W, Wang Z, Wang J 2018 Nanoscale 10 1727Google Scholar

    [80]

    Nguyen A, Sharma P, Scott T, Preciado E, Klee V, Sun D, Lu I H, Barroso D, Kim S, Shur V Y, Akhmatkhanov A R, Gryveman A, Bartels L, Dowben P A 2015 Nano Lett. 15 3364Google Scholar

    [81]

    Wen B, Zhu Y, Yudistira D, Boes A, Zhang L, Yidirim T, Liu B, Yan H, Sun X, Zhou Y, Xue Y, Zhang Y, Fu L, Mitchell A, Zhang H, Lu Y 2019 ACS Nano 13 5335Google Scholar

    [82]

    Jin H, Yoon W Y, Jo W 2017 Appl. Phys. Lett. 110 191601Google Scholar

    [83]

    Shin H W, Son J Y 2018 Electron. Mater. Lett. 14 59Google Scholar

    [84]

    Li T, Lipatov A, Lu H, Lee H, Lee J W, Torun E, Wirtz L, Eom C B, Íñigue J, Sinitskii A, Gruverman A 2018 Nat. Comm. 9 3344Google Scholar

    [85]

    Li T, Sharma P, Lipatov A, Lee H, Lee J W, Zhuravlev M Y, Paudel T R, Genenko Y A, Eom C B, Tsymbal E Y, Sinitskii A, Gruveman A 2017 Nano Lett. 17 922Google Scholar

    [86]

    Li Y, Sun X Y, Xu C Y, Cao J, Sun Z Y, Zhen L 2018 Nanoscale 10 23080Google Scholar

    [87]

    Shin H W, Son J Y 2019 J. Alloy. Compd. 792 673Google Scholar

    [88]

    Si M W, Liao P Y, Qiu G, Duan Y, Ye P D 2018 ACS Nano 12 6700Google Scholar

    [89]

    Si M W, Jiang C S, Chung W, Du Y C, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar

    [90]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [91]

    Wang M, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52Google Scholar

    [92]

    Zhao X W, Dong S N, Gao G Y, Xu Z X, Xu M, Yan J M, Zhao W Y, Liu Y K, Yan S Y, Zhang J X, Wang Y, Lu H Z, Li X G, Furdya J K, Luo H S, Zheng R K 2018 Quant. Mater. 3 52Google Scholar

    [93]

    Yan J M, Xu Z X, Chen T W, Xu M, Zhang C, Zhao X W, Liu F, Guo L, Yan S Y, Gao G Y, Wang F F, Zhang J X, Dong S N, Li X G, Luo H S, Zhao W, Zheng R K 2019 ACS Appl. Mater. Interfaces 11 9548Google Scholar

    [94]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Technol. 9 372Google Scholar

    [95]

    Zhang S, Yang J, Xu R, Wang F, Li W, Ghufran M, Zhang Y W, Yu Z, Zhang G, Qin Q, Lu Y 2014 ACS Nano 8 9590Google Scholar

    [96]

    Lee Y T, Kwoon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang H K, Im S 2015 ACS Nano 9 10394Google Scholar

    [97]

    Xie L, Chen X, Dong Z, Yu Q, Zhao X X, Yuan G L, Zeng Z M, Wang Y J, Zhang K 2019 Adv. Electron. Mater. 5 1900458Google Scholar

  • [1] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [2] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [3] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [5] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [6] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [7] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [8] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [9] 金鑫, 陶蕾, 张余洋, 潘金波, 杜世萱. 几种范德瓦耳斯铁电材料中新奇物性的研究进展. 物理学报, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [10] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [12] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [13] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [14] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [15] 吕笑梅, 黄凤珍, 朱劲松. 铁电材料中的电畴: 形成、结构、动性及相关性能. 物理学报, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [16] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [17] 高荣贞, 王静, 王俊升, 黄厚兵. Landau-Devonshire理论探究不同类型铁电材料的电卡效应. 物理学报, 2020, 69(21): 217801. doi: 10.7498/aps.69.20201195
    [18] 朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊. 缺陷离子调控对BiFeO3-BaTiO3基钙钛矿材料的铁电光伏特性影响. 物理学报, 2019, 68(21): 217701. doi: 10.7498/aps.68.20190996
    [19] 徐萌, 晏建民, 徐志学, 郭磊, 郑仁奎, 李晓光. 基于PbMg1/3Nb2/3O3-PbTiO3压电单晶的磁电复合薄膜材料研究进展. 物理学报, 2018, 67(15): 157506. doi: 10.7498/aps.67.20180911
    [20] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
计量
  • 文章访问数:  29784
  • PDF下载量:  2202
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 修回日期:  2019-11-01
  • 上网日期:  2019-12-14
  • 刊出日期:  2020-01-05

/

返回文章
返回