Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structures and melting behaviors of ultrathin platinum nanowires

Xia Dong Wang Xin-Qiang

Citation:

Structures and melting behaviors of ultrathin platinum nanowires

Xia Dong, Wang Xin-Qiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The amorphous-like structures and melting behaviors of ultrathin platinum nanowires are studied by EAM potential by using empirical molecular-dynamic simulation and the dependence of nanowire melting temperature pm soze os pntaomed. When the Lindeman criterion is 0.03, we find that the melting temperature for Pt nanowires is well consistent with the result obtained from the potential energy. Through comparing the Lindemann indexes on each shell, the thermal stability is studied. The results indicate that melting of the cylindrical helical structures starts from the interior atoms and that of the bulklike rectangular structure starts from the surface. We also observe the positions of the atoms at different temperatures to obtain the atomic diffusion and mobility.
    [1]

    Koh S J A, Lee H P, Lu C, Cheng Q H 2005 Phys. Rev. B 72 085414/1

    [2]

    Zhou J, Jin C, Seol J H, Li X, Shi L 2005 Phys. Rev. B 87 133109/1

    [3]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [4]

    Wen Y Y, Zhou F B, Liu R W 2001 Advances In Mechanics 2 47 (in Chinese) [文玉华, 周富倍, 刘日武 2001 力学进展 2 47]

    [5]

    Lieber C 2003 M. MRS Bull 28 486

    [6]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [7]

    Wang B L 2001 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [王保林 2001 金属纳米线奇异结构和物理性质的理论研究 硕士学位论文(南京: 南京大学)]

    [8]

    Erts D, Polyakov B, Dalyt B, Morries M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [9]

    Zhong F X, Zong R L, Zhu Y F 2009 J. Nanosci. Nanotechnol. 9 2437

    [10]

    Zhang X Y, Zhang L D, Lei Y, Zhao L X, Mao Y Q 2001 J. Mater. Chem. 11 1732

    [11]

    Cai L T, Skulason H, Kushmerick J G, Pollack S K, Naciri J, Shashidhar R, Allara D L, Mallouk T E, Mayer T S 2004 J. Phys. Chem. B 108 2827

    [12]

    Chu S Z, Inoue S, Wada K, Kanke Y, Kurashima K J 2005 Electrochem. Soc. 42 152

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater 4 525

    [14]

    Liu J, Duan J L, Toimil-Molares E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G, Neumann R 2006 Nanotechnology 17 1922

    [15]

    Erts D, Polyakov B, Dalyt B, Morris M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [16]

    Tan L K, Chong A S M, Tang X S E, Gao H 2007 J. Phys. Chem. C 111 4964

    [17]

    Sun S, Yang D, Zhang G, Sacher E, Dodelet J P 2007 Chem. Mater. 19 6376

    [18]

    Liu L, Lee W, Huang Z, Scholz R, Gosele U 2008 Nanotechnology 19 335604

    [19]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [20]

    Yanson A I, Yanson I K, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 216805

    [21]

    Diao J K, Gall K, Dunn M L 2004 J. Mech. Phys. Solids 52 1935

    [22]

    Li H, Pederiva F, Wang G H, Wang B L 2003 Chem. Phys. Lett. 94 381

    [23]

    Gulseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [24]

    Kang J W, Seo J J, Hwang H J 2002 J. Phys.: Condens. Matter 14 2629

    [25]

    Wang B L, Yin S Y, Wang G H, Buldum A, Zhao J J 2001 Phys. Rev. Lett. 86 2046

    [26]

    Wang B L, Wang G H, Zhao J J 2002 Phys. Rev. B 65 235406

    [27]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys 115 385

    [28]

    Wang X W, Fei G T, Zheng K, Jin Z, Zhang L D 2006 Appl. Phys. Lett. 88 173114

    [29]

    Hui L, Wang B L, Wang J L, Wang G H 2004 Chem. Phys. Lett. 20 399

    [30]

    Finnis M W, Sinclair J E 1984 Philosophic Magazine A 50 0045

    [31]

    Ackland G J, Vitek V 1990 J. Phys. Rev. B 41 223

    [32]

    Ackland G J, Tichy G, Vitek V 1987 J. Philosophic Magazine A 56 735

    [33]

    Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403

    [34]

    Zhang H Y, Gu X, Zhang X H, Ye X, Gong X G 2004 Phys. Lett. A 331 332

    [35]

    Wen Y H, Zhang Y, Zheng J C, Zhu Z Z 2009 J. Phys. Chem. C 113 20611

    [36]

    Zeng Q M, Zhou N G, Zhou T 2008 Chinese Ceramics 44 23 (in Chinese) [曾庆明, 周耐根, 周浪 2008 中国陶瓷 44 23]

    [37]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [38]

    Pawlow P Z 1909 Phys. Chem. Stoechiom. Verwandtschaftsl 65 545

    [39]

    Peng C X 2009 M. S. Dissertation (Jinan: Jinan University) (in Chinese) [彭传校 2009 镍纳米线的结构及其力学性能 硕士学位论文 (济南: 山东大学)]

    [40]

    Cheng D M 2006 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [程登木 2006 Ni3Al 纳米材料热力学性质的分子动力学模拟 硕士学位论文 (成都: 电子科技大学)]

    [41]

    Wang B L, Zhao J J, Wang G H 2005 Progress In Physics 25 0317 (in Chinese) [王保林, 赵纪军, 王广厚 2005 物理学进展 25 0317]

    [42]

    Stillinger F H, Wwber T A 1980 Phys. Rev. B 22 3790

    [43]

    Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323

  • [1]

    Koh S J A, Lee H P, Lu C, Cheng Q H 2005 Phys. Rev. B 72 085414/1

    [2]

    Zhou J, Jin C, Seol J H, Li X, Shi L 2005 Phys. Rev. B 87 133109/1

    [3]

    Li L, Zhang Y, Yang Y W, Huang X H, Li G H, Zhang L D 2005 Appl. Phys. Lett. 87 031912

    [4]

    Wen Y Y, Zhou F B, Liu R W 2001 Advances In Mechanics 2 47 (in Chinese) [文玉华, 周富倍, 刘日武 2001 力学进展 2 47]

    [5]

    Lieber C 2003 M. MRS Bull 28 486

    [6]

    Kondo Y, Takayanagi K 2000 Science 289 606

    [7]

    Wang B L 2001 M. S. Dissertation (Nanjing: Nanjing University) (in Chinese) [王保林 2001 金属纳米线奇异结构和物理性质的理论研究 硕士学位论文(南京: 南京大学)]

    [8]

    Erts D, Polyakov B, Dalyt B, Morries M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [9]

    Zhong F X, Zong R L, Zhu Y F 2009 J. Nanosci. Nanotechnol. 9 2437

    [10]

    Zhang X Y, Zhang L D, Lei Y, Zhao L X, Mao Y Q 2001 J. Mater. Chem. 11 1732

    [11]

    Cai L T, Skulason H, Kushmerick J G, Pollack S K, Naciri J, Shashidhar R, Allara D L, Mallouk T E, Mayer T S 2004 J. Phys. Chem. B 108 2827

    [12]

    Chu S Z, Inoue S, Wada K, Kanke Y, Kurashima K J 2005 Electrochem. Soc. 42 152

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater 4 525

    [14]

    Liu J, Duan J L, Toimil-Molares E, Karim S, Cornelius T W, Dobrev D, Yao H J, Sun Y M, Hou M D, Mo D, Wang Z G, Neumann R 2006 Nanotechnology 17 1922

    [15]

    Erts D, Polyakov B, Dalyt B, Morris M A, Ellingboe S, Boland J, Holmes J D 2006 J. Phys. Chem. B 110 820

    [16]

    Tan L K, Chong A S M, Tang X S E, Gao H 2007 J. Phys. Chem. C 111 4964

    [17]

    Sun S, Yang D, Zhang G, Sacher E, Dodelet J P 2007 Chem. Mater. 19 6376

    [18]

    Liu L, Lee W, Huang Z, Scholz R, Gosele U 2008 Nanotechnology 19 335604

    [19]

    Landman U, Luedtke W D, Burnham N A, Colton R J 1990 Science 248 454

    [20]

    Yanson A I, Yanson I K, van Ruitenbeek J M 2001 Phys. Rev. Lett. 87 216805

    [21]

    Diao J K, Gall K, Dunn M L 2004 J. Mech. Phys. Solids 52 1935

    [22]

    Li H, Pederiva F, Wang G H, Wang B L 2003 Chem. Phys. Lett. 94 381

    [23]

    Gulseren O, Ercolessi F, Tosatti E 1998 Phys. Rev. Lett. 80 3775

    [24]

    Kang J W, Seo J J, Hwang H J 2002 J. Phys.: Condens. Matter 14 2629

    [25]

    Wang B L, Yin S Y, Wang G H, Buldum A, Zhao J J 2001 Phys. Rev. Lett. 86 2046

    [26]

    Wang B L, Wang G H, Zhao J J 2002 Phys. Rev. B 65 235406

    [27]

    Qi Y, Cagin T, Johnson W L, Goddard W A 2001 J. Chem. Phys 115 385

    [28]

    Wang X W, Fei G T, Zheng K, Jin Z, Zhang L D 2006 Appl. Phys. Lett. 88 173114

    [29]

    Hui L, Wang B L, Wang J L, Wang G H 2004 Chem. Phys. Lett. 20 399

    [30]

    Finnis M W, Sinclair J E 1984 Philosophic Magazine A 50 0045

    [31]

    Ackland G J, Vitek V 1990 J. Phys. Rev. B 41 223

    [32]

    Ackland G J, Tichy G, Vitek V 1987 J. Philosophic Magazine A 56 735

    [33]

    Wang B L, Wang G H, Chen X S 2003 Phys. Rev. B 67 193403

    [34]

    Zhang H Y, Gu X, Zhang X H, Ye X, Gong X G 2004 Phys. Lett. A 331 332

    [35]

    Wen Y H, Zhang Y, Zheng J C, Zhu Z Z 2009 J. Phys. Chem. C 113 20611

    [36]

    Zeng Q M, Zhou N G, Zhou T 2008 Chinese Ceramics 44 23 (in Chinese) [曾庆明, 周耐根, 周浪 2008 中国陶瓷 44 23]

    [37]

    Bilalbegovic G 2000 Solid State Commun. 115 73

    [38]

    Pawlow P Z 1909 Phys. Chem. Stoechiom. Verwandtschaftsl 65 545

    [39]

    Peng C X 2009 M. S. Dissertation (Jinan: Jinan University) (in Chinese) [彭传校 2009 镍纳米线的结构及其力学性能 硕士学位论文 (济南: 山东大学)]

    [40]

    Cheng D M 2006 M. S. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [程登木 2006 Ni3Al 纳米材料热力学性质的分子动力学模拟 硕士学位论文 (成都: 电子科技大学)]

    [41]

    Wang B L, Zhao J J, Wang G H 2005 Progress In Physics 25 0317 (in Chinese) [王保林, 赵纪军, 王广厚 2005 物理学进展 25 0317]

    [42]

    Stillinger F H, Wwber T A 1980 Phys. Rev. B 22 3790

    [43]

    Zhou Y Q, Karplus M, Ball K D, Berry R S 2002 J. Chem. Phys. 116 2323

  • [1] Ming Zhi-Fei, Song Hai-Yang, An Min-Rong. Mechanical behavior of graphene magnesium matrix composites based on molecular dynamics simulation. Acta Physica Sinica, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] Chen Chao, Duan Fang-Li. Effect of functional groups on crumpling behavior and structure of graphene oxide. Acta Physica Sinica, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [4] Zhou Bian, Yang Liang. Molecular dynamics simulation of effect of cooling rate on the microstructures and deformation behaviors in metallic glasses. Acta Physica Sinica, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] Lin Jia-Qi, Li Xiao-Kang, Yang Wen-Long, Sun Hong-Guo, Xie Zhi-Bin, Xiu Han-jiang, Lei Qing-Quan. Molecular dynamics simulation study on the structure and mechanical properties of polyimide/KTa0.5Nb0.5O3 nanoparticle composites. Acta Physica Sinica, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [6] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [7] Li Ming-Lin, Lin Fan, Chen Yue. Study on the mechanical properties of carbon nanocones using molecular dynamics simulation. Acta Physica Sinica, 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [8] Zhang Zhao-Hui, Li Hai-Peng, Han Kui. Relations between the structure, symmetry and the energy mechanism of the polar-organic molecule ultra-films during the tribology. Acta Physica Sinica, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [10] Chen Qing, Sun Min-Hua. Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Acta Physica Sinica, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [11] Yan Xiao, Xin Zi-Hua, Zhang Jiao-Jiao. Molecular dynamics study on the structure and properties of silicon-graphdiyne. Acta Physica Sinica, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [12] Xu Zhi-Xin, Li Jia-Yun, Sun Min-Hua, Yao Xiu-Wei. Structure and dynamics in the crystallization of Ni500 nanocluster. Acta Physica Sinica, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [13] Zhang Ying-Jie, Xiao Xu-Yang, Li Yong-Qiang, Yan Yun-Hui. Molecular dynamics simulation of the influence of Cu(010) substrate on the melting of supported Co-Cu bimetallic clusters. Acta Physica Sinica, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [14] Wang Jun, Zhang Bao-Ling, Zhou Yu-Lu, Hou Qing. Molecular dynamics simulation of helium behavior in tungsten matrix. Acta Physica Sinica, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [16] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [17] Jin Nian-Qing, Teng Yu-Yong, Gu Bin, Zeng Xiang-Hua. Study of rare-gas atom injection into defective carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [18] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [19] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
Metrics
  • Abstract views:  6750
  • PDF Downloads:  632
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2011
  • Accepted Date:  28 November 2011
  • Published Online:  05 July 2012

/

返回文章
返回