Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Forming efficiency of porous anodic oxide and formation mechanism of nanopores

Zhu Xu-Fei Han Hua Song Ye Ma Hong-Tu Qi Wei-Xing Lu Chao Xu Chen

Citation:

Forming efficiency of porous anodic oxide and formation mechanism of nanopores

Zhu Xu-Fei, Han Hua, Song Ye, Ma Hong-Tu, Qi Wei-Xing, Lu Chao, Xu Chen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Porous anodic alumina (PAA) and porous anodic TiO2 nanotubes have received considerable attention because of their applications in a number of fields. The formation mechanisms of nanopores and nanotubes in these porous anodic oxides, however, have remained unclear until now. The interactions between porous structural features and current-time transients in anodizing process cannot be successfully explained. Based on the mechanism of dielectric breakdown of the compact anodic alumina (CAA), the differences and internal relations in their forming processes between CAA and PAA are contrasted in detail. From this innovative standpoint, according to the divergence of PAA and CAA in their current-time curves (or voltage-time curves), two essential causes which induce the decrease of the forming efficiency of oxide in the anodizing process, that is, the generation of the electronic current and the oxygen evolution, are presented in the paper. The evidences of the round hollows within the CAA films, show that the regularly embryo pores result from the oxygen bubbles. According to the aluminum anodizing in the mixed-electrolyte, the results show that once oxygen evolution stopping, the pore growth must be stopped, and the pores must be sealed by the above compact oxide. A novel composite film of the anodic oxide is presented. All of the above conclusively show that in the forming process of PAA, an appropriate magnitude of electronic current ensures the oxygen evolution and the pores formation, an appropriate magnitude of ionic current ensures the oxide formation and growth of pore walls.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171043, 51077072), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01021-002).
    [1]

    Platschek B, Keilbach A, Bein T 2011 Adv. Mater. 23 2395

    [2]

    Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y 2009 Nano Lett. 9 4297

    [3]

    Gu J J, Han J R, Cheng F W, Zhao G L, Liu L H, Sun H Y 2012 Acta Phys. Sin. 61 097503 (in Chinese) [顾建军, 韩金荣, 成福伟, 赵国良, 刘力虎, 孙会元 2012 物理学报 61 097503]

    [4]

    Wang X L Q, Zhang D X, Zhang H J 2011 Acta Phys. Sin. 60 058104 (in Chinese) [王旭龙琦, 张冬仙, 章海军 2011 物理学报 60 058104]

    [5]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851(in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [6]

    Wu Z G, Zhang P J, Xu L, Li S K, Wang J, Li X D, Yan P X 2010 Acta Phys. Sin. 59 438 (in Chinese) [吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋 2010 物理学报 59 438]

    [7]

    Wang C W, Ma B H, Li Y, Chen J B, Wang J, Liu W M 2008 Acta Phys. Sin. 57 5800 (in Chinese) [王成伟, 马保宏, 李燕, 陈建彪, 王建, 刘维民 2008 物理学报 57 5800]

    [8]

    Lin J, Liu K, Chen X F 2011 Small 7 1784

    [9]

    Habazaki H, Teraoka M, Aoki Y, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3939

    [10]

    Lee K, Kim D, Roy P, Paramasivam I, Birajdar B I, Spiecker E, Schmuki P 2010 J. Am. Chem. Soc. 132 1478

    [11]

    Li S Q, Yin J B, Zhang G M 2010 Sci. China. Chem. 53 1068 (in Chinese) [李仕琦, 尹建波, 张耿民 2010 中国科学: 化学 53 1068]

    [12]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [13]

    Jessensky O, Müller F, Gösele U 1998 Appl. Phys. Lett. 72 1173

    [14]

    Li A P, Müller F, Birner A, Nielsch K, Gösele U 1998 J. Appl. Phys. 84 6023

    [15]

    Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U 2002 Nano Lett. 2 677

    [16]

    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U 2008 Nat. Nanotechnol. 3 234

    [17]

    Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E 2006 Electrochem. Solid. St. 9 B47

    [18]

    Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H 2006 Electrochim. Acta 52 681

    [19]

    Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3175

    [20]

    Houser J E, Hebert K R 2009 Nat. Mater. 8 415

    [21]

    Houser J E, Hebert K R 2006 J. Electrochem. Soc. 153 B566

    [22]

    Li D D, Zhao L, Jiang C H, Lu J G 2010 Nano Lett. 10 2766

    [23]

    Li D D, Jiang C H, Jiang J H, Lu J G 2009 Chem. Mater. 21 253

    [24]

    Su Z X, Zhou W Z 2008 Adv. Mater. 20 3663

    [25]

    Su Z X, Bühl M, Zhou W Z 2009 J. Am. Chem. Soc. 131 8697

    [26]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 357

    [27]

    Berger S, Hahn R, Roy P, Schmuki P 2010 Phys. Status Solidi B 247 2424

    [28]

    Roy P, Berger S, Schmuki P 2011 Angew. Chem. Int. Ed. 50 2904

    [29]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 656 (in Chinese) [刘虹雯,郭海明,王业亮,申承民,杨海涛,王雨田,魏龙 2004 物理学报 53 656]

    [30]

    Zhu X F, Han H, Song Y, Duan W Q 2012Acta Phys. Chim. Sin. 28 1291 (in Chinese) [朱绪飞, 韩华, 宋晔, 段文强 2012 物理化学学报 28 1291]

    [31]

    Patermarakis G, Moussoutzanis K 2009 Electrochim. Acta 54 2434

    [32]

    Patermarakis G 2009 J. Electroanal. Chem. 635 39

    [33]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [34]

    Diggle J W, Downie T C, Goulding C W 1969 Chem. Rev. 69 365

    [35]

    O'Sullivan J P, Wood G C 1970 Proc. R. Soc. Lond. A 317 511

    [36]

    Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S 1978 Nature 272 433

    [37]

    Thompson G E, Wood G C 1981 Nature 290 230

    [38]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [39]

    Parkhutik V P, Shershulsky V I 1992 J. Phys. D: Appl. Phys. 25 1258

    [40]

    Thompson G E 1997 Thin Solid Films 297 192

    [41]

    Masuda H, Hasegwa F, Ono S 1997 J. Electrochem. Soc. 144 L127

    [42]

    Poinern G E J, Ali N, Fawcett D 2011 Materials 4 487

    [43]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 8955

    [44]

    Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M 1997 J. Electrochem. Soc. 144 866

    [45]

    Zhu X F, Liu L, Zhao B C 2003 The Chinese Journal of Nonferrous Metals 13 1031 (in Chinese) [朱绪飞, 刘 霖, 赵宝昌 2003 中国有色金属学报 13 1031]

    [46]

    Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P 2007 Curr. Opi. Solid. St. M. 11 3

    [47]

    Ghicov A, Schmuki P 2009 Chem. Commun. 45 2791

    [48]

    Li F Y, Zhang L, Metzger R M 1998 Chem. Mater. 10 2470

    [49]

    Albella J M, Montero I, Martinez-Duart J M 1987 Electrochim. Acta 32 255

    [50]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Mater. Lett. 62 4038

    [51]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Monatsh. Chem. 139 999

    [52]

    Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J 1999 Corros. Sci. 41 1945

    [53]

    Zhou X, Thompson G E, Habazaki H, Paez M A, Shimizu K, Skeldon P, Wood G C 2000 J. Electrochem. Soc. 147 1747

    [54]

    Habazaki H, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson G E 2004 Corros. Sci. 46 2041

    [55]

    Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U 2008 ACS Nano 2 302

    [56]

    Lee W, Scholz R, Gösele U 2008 Nano Lett. 8 2155

    [57]

    Chung C K, Zhou R X, Liu T Y, Chang W T 2009 Nanotechnology 20 055301

    [58]

    Ispas A, Bund A, Vrublevsky I 2010 J. Solid State Electrochem. 14 2121

    [59]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 J. Mater. Chem. 21 9661

    [60]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 Chem. Commun. 47 2173

    [61]

    Zhang R, Jiang K M, Zhu Y, Qi H Y, Ding G Q 2011 Appl. Surf. Sci. 258 586

    [62]

    Patermarakis G, Moussoutzanis K 2011 J. Electroanal. Chem. 659 176

  • [1]

    Platschek B, Keilbach A, Bein T 2011 Adv. Mater. 23 2395

    [2]

    Huang C, Jiang J, Lu M, Sun L, Meletis E I, Hao Y 2009 Nano Lett. 9 4297

    [3]

    Gu J J, Han J R, Cheng F W, Zhao G L, Liu L H, Sun H Y 2012 Acta Phys. Sin. 61 097503 (in Chinese) [顾建军, 韩金荣, 成福伟, 赵国良, 刘力虎, 孙会元 2012 物理学报 61 097503]

    [4]

    Wang X L Q, Zhang D X, Zhang H J 2011 Acta Phys. Sin. 60 058104 (in Chinese) [王旭龙琦, 张冬仙, 章海军 2011 物理学报 60 058104]

    [5]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851(in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [6]

    Wu Z G, Zhang P J, Xu L, Li S K, Wang J, Li X D, Yan P X 2010 Acta Phys. Sin. 59 438 (in Chinese) [吴志国, 张鹏举, 徐亮, 李拴魁, 王君, 李旭东, 闫鹏勋 2010 物理学报 59 438]

    [7]

    Wang C W, Ma B H, Li Y, Chen J B, Wang J, Liu W M 2008 Acta Phys. Sin. 57 5800 (in Chinese) [王成伟, 马保宏, 李燕, 陈建彪, 王建, 刘维民 2008 物理学报 57 5800]

    [8]

    Lin J, Liu K, Chen X F 2011 Small 7 1784

    [9]

    Habazaki H, Teraoka M, Aoki Y, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3939

    [10]

    Lee K, Kim D, Roy P, Paramasivam I, Birajdar B I, Spiecker E, Schmuki P 2010 J. Am. Chem. Soc. 132 1478

    [11]

    Li S Q, Yin J B, Zhang G M 2010 Sci. China. Chem. 53 1068 (in Chinese) [李仕琦, 尹建波, 张耿民 2010 中国科学: 化学 53 1068]

    [12]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [13]

    Jessensky O, Müller F, Gösele U 1998 Appl. Phys. Lett. 72 1173

    [14]

    Li A P, Müller F, Birner A, Nielsch K, Gösele U 1998 J. Appl. Phys. 84 6023

    [15]

    Nielsch K, Choi J, Schwirn K, Wehrspohn R B, Gösele U 2002 Nano Lett. 2 677

    [16]

    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gösele U 2008 Nat. Nanotechnol. 3 234

    [17]

    Skeldon P, Thompson G E, Garcia-Vergara S J, Iglesias-Rubianes L, Blanco-Pinzon C E 2006 Electrochem. Solid. St. 9 B47

    [18]

    Garcia-Vergara S J, Skeldon P, Thompson G E, Habazaki H 2006 Electrochim. Acta 52 681

    [19]

    Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E 2010 Electrochim. Acta 55 3175

    [20]

    Houser J E, Hebert K R 2009 Nat. Mater. 8 415

    [21]

    Houser J E, Hebert K R 2006 J. Electrochem. Soc. 153 B566

    [22]

    Li D D, Zhao L, Jiang C H, Lu J G 2010 Nano Lett. 10 2766

    [23]

    Li D D, Jiang C H, Jiang J H, Lu J G 2009 Chem. Mater. 21 253

    [24]

    Su Z X, Zhou W Z 2008 Adv. Mater. 20 3663

    [25]

    Su Z X, Bühl M, Zhou W Z 2009 J. Am. Chem. Soc. 131 8697

    [26]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 357

    [27]

    Berger S, Hahn R, Roy P, Schmuki P 2010 Phys. Status Solidi B 247 2424

    [28]

    Roy P, Berger S, Schmuki P 2011 Angew. Chem. Int. Ed. 50 2904

    [29]

    Liu H W, Guo H M, Wang Y L, Shen C M, Yang H T, Wang Y T, Wei L 2004 Acta Phys. Sin. 53 656 (in Chinese) [刘虹雯,郭海明,王业亮,申承民,杨海涛,王雨田,魏龙 2004 物理学报 53 656]

    [30]

    Zhu X F, Han H, Song Y, Duan W Q 2012Acta Phys. Chim. Sin. 28 1291 (in Chinese) [朱绪飞, 韩华, 宋晔, 段文强 2012 物理化学学报 28 1291]

    [31]

    Patermarakis G, Moussoutzanis K 2009 Electrochim. Acta 54 2434

    [32]

    Patermarakis G 2009 J. Electroanal. Chem. 635 39

    [33]

    Keller F, Hunter M S, Robinson D L 1953 J. Electrochem. Soc. 100 411

    [34]

    Diggle J W, Downie T C, Goulding C W 1969 Chem. Rev. 69 365

    [35]

    O'Sullivan J P, Wood G C 1970 Proc. R. Soc. Lond. A 317 511

    [36]

    Thompson G E, Furneaux R C, Wood G C, Richardson J A, Goode J S 1978 Nature 272 433

    [37]

    Thompson G E, Wood G C 1981 Nature 290 230

    [38]

    Furneaux R C, Rigby W R, Davidson A P 1989 Nature 337 147

    [39]

    Parkhutik V P, Shershulsky V I 1992 J. Phys. D: Appl. Phys. 25 1258

    [40]

    Thompson G E 1997 Thin Solid Films 297 192

    [41]

    Masuda H, Hasegwa F, Ono S 1997 J. Electrochem. Soc. 144 L127

    [42]

    Poinern G E J, Ali N, Fawcett D 2011 Materials 4 487

    [43]

    Su Z X, Zhou W Z 2011 J. Mater. Chem. 21 8955

    [44]

    Li Y, Shimada H, Sakairi M, Shigyo K, Takahashi H, Seo M 1997 J. Electrochem. Soc. 144 866

    [45]

    Zhu X F, Liu L, Zhao B C 2003 The Chinese Journal of Nonferrous Metals 13 1031 (in Chinese) [朱绪飞, 刘 霖, 赵宝昌 2003 中国有色金属学报 13 1031]

    [46]

    Macak J M, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P 2007 Curr. Opi. Solid. St. M. 11 3

    [47]

    Ghicov A, Schmuki P 2009 Chem. Commun. 45 2791

    [48]

    Li F Y, Zhang L, Metzger R M 1998 Chem. Mater. 10 2470

    [49]

    Albella J M, Montero I, Martinez-Duart J M 1987 Electrochim. Acta 32 255

    [50]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Mater. Lett. 62 4038

    [51]

    Zhu X F, Liu L, Song Y, Jia H, Yu H, Xiao X, Yang X 2008 Monatsh. Chem. 139 999

    [52]

    Crossland A C, Habazaki H, Shimizu K, Skeldon P, Thompson G E, Wood G C, Zhou X, Smith C J 1999 Corros. Sci. 41 1945

    [53]

    Zhou X, Thompson G E, Habazaki H, Paez M A, Shimizu K, Skeldon P, Wood G C 2000 J. Electrochem. Soc. 147 1747

    [54]

    Habazaki H, Konno H, Shimizu K, Nagata S, Skeldon P, Thompson G E 2004 Corros. Sci. 46 2041

    [55]

    Schwirn K, Lee W, Hillebrand R, Steinhart M, Nielsch K, Gösele U 2008 ACS Nano 2 302

    [56]

    Lee W, Scholz R, Gösele U 2008 Nano Lett. 8 2155

    [57]

    Chung C K, Zhou R X, Liu T Y, Chang W T 2009 Nanotechnology 20 055301

    [58]

    Ispas A, Bund A, Vrublevsky I 2010 J. Solid State Electrochem. 14 2121

    [59]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 J. Mater. Chem. 21 9661

    [60]

    Li Y, Ling Z Y, Hu X, Liu Y S, Chang Y 2011 Chem. Commun. 47 2173

    [61]

    Zhang R, Jiang K M, Zhu Y, Qi H Y, Ding G Q 2011 Appl. Surf. Sci. 258 586

    [62]

    Patermarakis G, Moussoutzanis K 2011 J. Electroanal. Chem. 659 176

  • [1] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] Meng Xiang-Chen, Wang Dan, Cai Ya-Hui, Ye Zhen, He Yong-Ning, Xu Ya-Nan. Secondary electron emission suppression on alumina surface and its application in multipactor suppression. Acta Physica Sinica, 2023, 72(10): 107901. doi: 10.7498/aps.72.20222404
    [3] Tan Song-Lin, Zhuang Yong-Qi, Yi Jian-Hong. Preparation and properties of multi-walled carbon nanotube reinforced alumina composites by sol- spray method. Acta Physica Sinica, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [4] Xu Qing-Lin, Xiang Ting, Xu Wei, Li Ting, Wu Xiao-Yan, Li Wei, Qiu Xue-Jun, Chen Ping. Gold nanoparticals modified indium tin oxide anode for high performance red perovskite light emitting diodes. Acta Physica Sinica, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [5] Bai Chun-Jiang, Feng Guo-Bao, Cui Wan-Zhao, He Yong-Ning, Zhang Wen, Hu Shao-Guang, Ye Ming, Hu Tian-Cun, Huang Guang-Sun, Wang Qi. Suppressing second electron yield based on porous anodic alumina. Acta Physica Sinica, 2018, 67(3): 037902. doi: 10.7498/aps.67.20172243
    [6] Ma Chao, Min Dao-Min, Li Sheng-Tao, Zheng Xu, Li Xi-Yu, Min Chao, Zhan Hai-Xia. Trap distribution and direct current breakdown characteristics in polypropylene/Al2O3 nanodielectrics. Acta Physica Sinica, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [7] Li Guo-Dong, Wang Qian, Deng Bao-Xia, Zhang Ya-Jing. Origin of nanopore alumina film photoluminescence: three kinds of defect centers. Acta Physica Sinica, 2014, 63(24): 247802. doi: 10.7498/aps.63.247802
    [8] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [9] Wang Xu-Long-Qi, Zhang Dong-Xian, Zhang Hai-Jun. A method of color modulation based on porous alumina and atomic layer deposition. Acta Physica Sinica, 2011, 60(5): 058104. doi: 10.7498/aps.60.058104
    [10] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [11] Wang Cheng-Wei, Ma Bao-Hong, Li Yan, Chen Jian-Biao, Wang Jian, Liu Wei-Min. Investigation of the controllable growth of the TiO2 nanotube arrays fabricated by anodic oxidation method. Acta Physica Sinica, 2008, 57(9): 5800-5805. doi: 10.7498/aps.57.5800
    [12] Ma Bao-Hong, Li Yan, Wang Cheng-Wei, Wang Jian, Chen Jian-Biao, Liu Wei-Min. Investigation of the UV absorption of porous TiO2/Al/SiO2 nanostructures. Acta Physica Sinica, 2008, 57(1): 586-591. doi: 10.7498/aps.57.586
    [13] Huang Li-Qing, Pan Hua-Qiang, Wang Jun, Tong Hui-Min, Zhu Ke, Ren Guan-Xu, Wang Yong-Chang. Spontaneous formation of ordered Sn nanodot array on porous anodic alumina membrane. Acta Physica Sinica, 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [14] Wang Sen, Yu Guo-Jun, Gong Jin-Long, Li Qin-Tao, Zhu De-Zhang, Zhu Zhi-Yuan. Etching effects of low energy argon ion beam on porous anodic aluminum oxide membranes. Acta Physica Sinica, 2006, 55(3): 1517-1522. doi: 10.7498/aps.55.1517
    [15] Wang Sen, Yu Guo-Jun, Gong Jin-Long, Zhu De-Zhang, He Sui-Xia, Zhu Zhi-Yuan, Xu Hong-Jie. Synthesis of carbon nanotubes using alumina template and its thermal annealing effects. Acta Physica Sinica, 2005, 54(10): 4949-4954. doi: 10.7498/aps.54.4949
    [16] Wang Cheng-Wei, Wang Jian, Li Yan, Liu Wei-Min, Xu Tao, Sun Xiao-Wei, Li Hu-Lin. Determination of the optical constants of porous anodic aluminum oxide films. Acta Physica Sinica, 2005, 54(1): 439-444. doi: 10.7498/aps.54.439
    [17] Li Yan, Wang Cheng-Wei, Tian Jun, Liu Wei-Min, Chen Miao, Li Hu-Lin. Optical properties of ordered Co/AAO nano-array composite structure. Acta Physica Sinica, 2004, 53(5): 1594-1598. doi: 10.7498/aps.53.1594
    [18] Liu Hong-Wen, Guo Hai-Ming, Wang Ye-Liang, Shen Cheng-Min, Yang Hai-Tao, Wang Yu-Tian, Wei Long. Formation of self-assembled stripes on the anodic aluminum oxide. Acta Physica Sinica, 2004, 53(2): 656-660. doi: 10.7498/aps.53.656
    [19] Ma Chun-Lan. The fabrication of high-quality periodic porous alumina templates. Acta Physica Sinica, 2004, 53(6): 1952-1955. doi: 10.7498/aps.53.1952
    [20] LI PENG, MA YU-RONG, FANG RONG-CHUAN, HU KE-LIANG. BLUE EMISSION AND INFRARED STUDY OF THE POROUS SILICON ANODIZED UNDER LASER ILLUMINATION. Acta Physica Sinica, 1998, 47(1): 124-130. doi: 10.7498/aps.47.124
Metrics
  • Abstract views:  8378
  • PDF Downloads:  1151
  • Cited By: 0
Publishing process
  • Received Date:  20 May 2012
  • Accepted Date:  13 September 2012
  • Published Online:  05 November 2012

/

返回文章
返回