Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

Qiu Dong-Hong Wen Qi-Ye Yang Qing-Hui Chen Zhi Jing Yu-Lan Zhang Huai-Wu

Citation:

Growth of vanadium dioxide thin films on Pt metal film and the electrically-driven metal–insulator transition characteristics of them

Qiu Dong-Hong, Wen Qi-Ye, Yang Qing-Hui, Chen Zhi, Jing Yu-Lan, Zhang Huai-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High-quality VO2 thin films are deposited on the metal platinum (Pt) electrode buffered by silicon dioxide (SiO2) using radio frequency magnetron sputtering. The effect of the thickness of SiO2 on the the crystal structure, morphology and metal-insulator transition (MIT) performance of the films are discussed. Results show that SiO2 buffer layer with a thickness of 0.2 μm can effectively eliminate huge stress between the VO2 film and the metal film; and the VO2 thin film with the distinct MIT are deposited. When the buffer layer reaches more than 0.7 μm, the VO2 film has a distinct (011) preferred orientation, the smooth surface and compact nanostructure, and the resistance change reaches more than three orders of magnitude. At the same time, Pt-SiO2/VO2-Au sandwiched structure is achieved to test the current versus voltage curves, in which can be seen several distinct steps of current caused by the voltage perpendicular to the plane of a VO2 film. The result confirms the electrically-driven metal-insulator transition. Due to the high-quality VO2 and the flexible device structure, the VO2/Pt-SiO2 can be widely used for large-scale integrated electronic control devices.
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 61131005), Key Project of Chinese Ministry of Education (Grant No. 313013), the National High Technology Research and Development Program 863 (Grant No. 2011AA010204), the "New Century Excellent Talent Foundation" of China (Grant No. NCET-11-0068), the Sichuan Youth S & T foundation, China (Grant No. 2011JQ0001), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20110185130002), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2010J034), and the CAEP THz Science and Technology Foundation (Grant No. CAEPTHZ201207).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Lopez R, Boatner L A, Haynes T E, Haglund Jr R F, Feldman L C 2004 Appl. Phys. Lett. 85 1410

    [3]

    Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J, Lim Y S 2006 Phys. Rev. Lett. 97 266401

    [4]

    Wen Q Y, Zhang H W, Yang Q H, Xie Y X, Chen K, Liu Y L 2010 Appl. Phys. Lett. 97 021111

    [5]

    Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803

    [6]

    Sun D D, Chen Z, Wen Q Y, Qiu D H, Lai W E, Dong K, Zhao B H, Zhang H W 2013 Acta Phys. Sin. 62 017202 (in Chinese) [孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武 2013 物理学报 62 017202]

    [7]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys.: Condens. Matter 12 8837

    [8]

    Seo G, Kim B -J, Ko C, Cui Y, Lee Y W, Shin J H, Ramanathan S, Kim H T 2011 IEEE Electron Device Lett. 32 1582

    [9]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501

    [10]

    Kanki T, Hotta Y, Asakawa N, Kawai T, Tanaka H 2010 Appl. Phys. Lett. 96 242108

    [11]

    Lee Y W, Kim B J, Lim J W, Yun S J, Choi S, Chae B G, Kim G, Kim H T 2008 Appl. Phys. Lett. 92 162903

    [12]

    Zhao Y, Lee J H, Zhu Y H, Nazari M, Chen C H, Wang H Y, Bernussi A, Holtz M, Fan Z Y 2012 J. Appl. Phys. 111 053533

    [13]

    Wang C L, Tian Z, Xing Q R, Gu J Q, Liu F, Hu M L, Chai L, Wang Q Y 2010 Acta Phys. Sin. 59 7857 (in Chinese) [王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月 2010 物理学报 59 7857]

    [14]

    Li J, Dho J 2011 Appl. Phys. Lett. 99 231909

    [15]

    Luo Z F, Wu Z M, Xu X D, Wang T, Jiang Y D 2010 Chin. Phys. B 19 106103

    [16]

    Lee M J, Park Y, Suh D S, Lee E H, Seo S, Kim D C, Jung R, Kang B S, Ahn S E, Lee C B, Seo D H, Cha Y K, Yoo I K, Kim J S, Park B H 2007 Adv. Mater. 19 3919

    [17]

    Zhou Y, Chen X, Ko C, Yang Z, Ramanathan S 2013 IEEE Electron Device Lett. 34 220

    [18]

    Okimura K, Suruz Mian Md 2012 J. Vac. Sci. Technol. A 30 051502

    [19]

    Grbovic D, Lavrik N V, Rajic S, Datskos P G 2008 J. Appl. Phys. 104 054508

    [20]

    Ji Y D, Pan T S, Bi Z, Liang W Z, Zhang Y, Zeng H Z, Wen Q Y, Zhang H W, Jia Q X, Lin Y 2012 Appl. Phys. Lett. 101 071902

    [21]

    Narayan J, Bhosle V M 2006 J. Appl. Phys. 100 103524

    [22]

    Kim H T, Chae B G, Youn D H, Maeng S L, Kim G, Kang K Y, Lim Y S 2004 New J. Phys. 6 52

    [23]

    Leroy J, Crunteanu A, Bessaudou A, Cosset F, Champeaux C, Orlianges J C 2012 Appl. Phys. Lett. 100 213507

    [24]

    Crunteanu A, Givernaud J, Leroy J, Mardivirin D, Champeaux C, Orlianges J C, Catherinot A, Blondy P 2010 Sci. Technol. Adv. Mater. 11 065002

    [25]

    Ruzmetov D, Gopalakrishnan G, Deng J, Narayanamurti V, Ramanathan S 2009 J. Appl. Phys. 106 083702

    [26]

    Ko C, Ramanathan S 2008 Appl. Phys. Lett. 93 252101

  • [1] Sun Xiao-Ning, Qu Zhao-Ming, Wang Qing-Guo, Yuan Yang. Voltage induced phase transition of polyethene glycol composite film filled with VO2 nanoparticles. Acta Physica Sinica, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [2] Zhang Jiao, Li Yi, Liu Zhi-Min, Li Zheng-Peng, Huang Ya-Qin, Pei Jiang-Heng, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Characteristics of electrically-induced phase transition in tungsten-doped vanadium dioxide film. Acta Physica Sinica, 2017, 66(23): 238101. doi: 10.7498/aps.66.238101
    [3] Xu Ting-Ting, Li Yi, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Liu Zhi-Min, Zhang Jiao, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Infrared modulator based on AZO/VO2/AZO sandwiched structure due to electric field induced phase transition. Acta Physica Sinica, 2016, 65(24): 248102. doi: 10.7498/aps.65.248102
    [4] Xiong Ying, Wen Qi-Ye, Tian Wei, Mao Qi, Chen Zhi, Yang Qing-Hui, Jing Yu-Lan. Researches on the electrical properties of vanadium oxide thin films on Si substrates. Acta Physica Sinica, 2015, 64(1): 017102. doi: 10.7498/aps.64.017102
    [5] Hao Ru-Long, Li Yi, Liu Fei, Sun Yao, Tang Jia-Yin, Chen Pei-Zu, Jiang Wei, Wu Zheng-Yi, Xu Ting-Ting, Fang Bao-Ying, Wang Xiao-Hua, Xiao Han. Optical modulation characteristics of VO2 thin film due to electric field induced phase transition in the FTO/VO2/FTO structure. Acta Physica Sinica, 2015, 64(19): 198101. doi: 10.7498/aps.64.198101
    [6] Hu Hui-Yong, Liu Xiang-Yu, Lian Yong-Chang, Zhang He-Ming, Song Jian-Jun, Xuan Rong-Xi, Shu Bin. Study on the influence of γ -ray total dose radiation effect on the threshold voltage and transconductance of the strained Si p-channel metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [7] Liu Xiang-Yu, Hu Hui-Yong, Zhang He-Ming, Xuan Rong-Xi, Song Jian-Jun, Shu Bin, Wang Bin, Wang Meng. Study on the strained SiGe p-channel metal-oxide-semiconductor field-effect transistor with polycrystalline silicon germanium gate threshold voltage. Acta Physica Sinica, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [8] Fan Min-Min, Xu Jing-Ping, Liu Lu, Bai Yu-Rong, Huang Yong. Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOSFET. Acta Physica Sinica, 2014, 63(8): 087301. doi: 10.7498/aps.63.087301
    [9] Zhou Chun-Yu, Zhang He-Ming, Hu Hui-Yong, Zhuang Yi-Qi, Su Bin, Wang Bin, Wang Guan-Yu. Physical compact modeling for threshold voltage of strained Si NMOSFET. Acta Physica Sinica, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [10] Gao Wang, Hu Ming, Hou Shun-Bao, Lü Zhi-Jun, Wu Bin. Preparation of vanadium oxide thin films by oxidation with rapid thermal processing. Acta Physica Sinica, 2013, 62(1): 018104. doi: 10.7498/aps.62.018104
    [11] Xin Yan-Hui, Liu Hong-Xia, Fan Xiao-Jiao, Zhuo Qing-Qing. Threshold voltage analytical model of fully depleted strained Si single Halo silicon-on-insulator metal-oxide semiconductor field effect transistor. Acta Physica Sinica, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [12] Sun Dan-Dan, Chen Zhi, Wen Qi-Ye, Qiu Dong-Hong, Lai Wei-En, Dong Kai, Zhao Bi-Hui, Zhang Huai-Wu. VO2 low temperature deposition and terahertz transmission modulation. Acta Physica Sinica, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [13] Wu Bin, Hu Ming, Hou Shun-Bao, Lü Zhi-Jun, Gao Wang, Liang Ji-Ran. Preparation and characteristic of phase transition vanadium oxide thin films by rapid thermal process. Acta Physica Sinica, 2012, 61(18): 188101. doi: 10.7498/aps.61.188101
    [14] Qu Jiang-Tao, Zhang He-Ming, Wang Guan-Yu, Wang Xiao-Yan, Hu Hui-Yong. Threshold voltage model for quantum-well channelpMOSFET with poly SiGe gate. Acta Physica Sinica, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [15] Wang Guan-Yu, Zhang He-Ming, Wang Xiao-Yan, Wu Tie-Feng, Wang Bin. Two-dimensional threshold voltage model of sub-100 nm strained-Si/SiGe nMOSFET. Acta Physica Sinica, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [16] Tang Xiao-Yan, Zhang Yi-Men, Zhang Yu-Ming. The threshold voltage of SiC Schottky barrier source/drain MOSFET. Acta Physica Sinica, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [17] Zhang Zhi-Feng, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Song Jian-Jun. Threshold voltage model of strained Si channel nMOSFET. Acta Physica Sinica, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [18] Zhang He-Ming, Cui Xiao-Ying, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Study on threshold voltage model of strained SiGe quantum well channel SOI PMOSFET. Acta Physica Sinica, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [19] Li Yan-Ping, Xu Jing-Ping, Chen Wei-Bing, Xu Sheng-Guo, Ji Feng. 2-D threshold voltage model for short-channel MOSFET with quantum-mechanical effects. Acta Physica Sinica, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [20] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E. An analytical model of MOSFET threshold voltage with considiring the quantum effects. Acta Physica Sinica, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
Metrics
  • Abstract views:  5867
  • PDF Downloads:  903
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2013
  • Accepted Date:  01 August 2013
  • Published Online:  05 November 2013

/

返回文章
返回