Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system

Zhang Jin-Ping Zhang Yang-Yang Li Hui Gao Jing-Xia Cheng Xin-Lu

Citation:

Molecular dynamics investigation of thermite reaction behavior of nanostructured Al/SiO2 system

Zhang Jin-Ping, Zhang Yang-Yang, Li Hui, Gao Jing-Xia, Cheng Xin-Lu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this study we have investigated the thermite reaction of Al/SiO2 layered structure by classical molecular dynamics simulation in combination with the reactive force field function. Under the adiabatic conditions, we simulate the structural changes and energetic properties of the system at six different initial temperatures (600, 700, 800, 900, 1000 and 1100 K). These results show that the thermite reaction of Al/SiO2 is the self-heating reduction-oxidation (redox) reaction. When the initial temperatures are 900 and 1000 K, the Al layers change into liquid-like structure under melting points. The thermite reaction happens with a much faster rate. At other initial temperatures such as 600, 700, 800 and 1100 K, the thin Al-O layer at the interface is quite weak for the higher initial temperature. The adiabatic reaction temperature increases and the effective reaction time decreases with the increasing of the initial temperature. the reaction self-heating rates are 3.4, 3.5, 4.7 and 5.4 K/ps for the initial temperatures of 600, 700, 800 and 1100 K, respectively. The results reveal that the thermite reaction self-heating rates depend on the thickness of interfacial diffusion barrier in the nanoparticle. In addition, the thermite reaction of the Al/SiO2 system leaves the Si, which accord well with the experimental result.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11176020), the Key Program of Science and Technology of the Henan Educational Committee, China (Grant Nos. 13B140986, 13B430985), and the Program of Zhengzhou Science and Technology Bureau, China (Grant Nos. 121PPTGG359-3, 121PYFZX178).
    [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
  • [1]

    Xue Y, Ren X M, Xie R Z, Zhang R, Shi C H 2009 Initiators Pyrotechnics 6 17 (in Chinese) [薛艳, 任小明, 解瑞珍, 张蕊, 史春红 2009 火工品 6 17]

    [2]
    [3]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [4]

    Xu D, Yang Y, Cheng H, Li Y Y, Zhang K 2012 Combust. Flame 159 2202

    [5]
    [6]
    [7]

    Yang Y, Xu D, Zhang K 2012 J. Mater. Sci. 47 1296

    [8]

    Shende R, Subramanian S, Hasan S, Apperson S, Thiruvengadathan R, Gangopadhyay K, Gangopadhyay S, Redner P, Kapoor D, Nicolich S, Balas W 2008 Propell. Explos. Pyrot. 33 122

    [9]
    [10]
    [11]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [12]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [13]
    [14]

    Grishin Yu M, Kozlov N P, Skryabin A S, Vadchenko S G, Sachkova N V, Sytschev A E 2011 Int. J. Self-Propag High-Temp. Synth. 20 181

    [15]
    [16]
    [17]

    Ermoline A, Stamatis D, Dreizin E L 2012 Thermochim. Acta 527 52

    [18]
    [19]

    Wen J Z, Ringuette S, Bohlouli-Zanjani G, Hu A, Nguyen N H, Persic J, Petre C F, Zhou Y N 2013 Nanoscale Res. Lett. 8 184

    [20]
    [21]

    Zhou T T, Huang F L 2012 Acta Phys. Sin. 61 246501 (in Chinese) [周婷婷, 黄风雷 2012 物理学报 61 246501]

    [22]
    [23]

    Song H J, Huang F L 2011 Chin. Phys. Lett. 28 096103

    [24]
    [25]

    Imran M, Hussain F, Rashid M, Ahmad S A 2012 Chin. Phys. B 21 126802

    [26]
    [27]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [28]
    [29]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [30]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [31]
    [32]
    [33]

    Song W X, Zhao S J 2012 Chin. J. Energy. Mater. 20 571 (in Chinese) [宋文雄, 赵世金 2012 含能材料 20 571]

    [34]

    Zhou T T, Zybin S V, Liu Y, Huang F L, Goddard W A 2012 J. Appl. Phys. 111 124904

    [35]
    [36]
    [37]

    Liu H, Li Q K, He Y H 2013 Acta Phys. Sin. 62 208202 (in Chinese) [刘海, 李启楷, 何远航 2013 物理学报 62 208202]

    [38]

    van Duin A C T, Dasgupta S, Lorant F, Goddard W A 2001 J. Phys. Chem. A 105 9396

    [39]
    [40]

    Narayanan B, van Duin A C T, Kappes B B, Reimanis I E, Ciobanu C V 2012 Model. Simul. Mater. Sci. Eng. 20 015002

    [41]
    [42]
    [43]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [44]
    [45]

    Tang F L, Chen G B, Xie Y, Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese) [汤富领, 陈功宝, 谢勇, 路文江 2011 物理学报 60 066801]

    [46]

    Zhao S, Germann T C, Strachan A 2006 J. Chem. Phys. 125 164707

    [47]
Metrics
  • Abstract views:  7077
  • PDF Downloads:  1169
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2013
  • Accepted Date:  08 January 2014
  • Published Online:  05 April 2014

/

返回文章
返回