Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Viscoelastic focusing of microparticles in circular cross-sectional microchannels

Dai Qing Xiang Nan Cheng Jie Ni Zhong-Hua

Citation:

Viscoelastic focusing of microparticles in circular cross-sectional microchannels

Dai Qing, Xiang Nan, Cheng Jie, Ni Zhong-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Particle focusing induced by viscoelasticity of fluids has attracted increasing interest in recent years. However, the regulation mechanisms of critical parameters affecting the particle focusing behaviors are still unclear. This paper systematically characterized the dynamics of particle migration in non-Newtonian fluid flows, and analyzed the effects of flow rate and channel length on particle focusing behaviors. Först, the lateral migration behaviors of particles suspended in Newtonian fluids (e.g., pure water and 22 wt% glycerol aqueous solution) are compared with those in non-Newtonian fluids (8 wt% polyvinylpyrrolidone aqueous solution). It is found that the particles suspended in non-Newtonian fluids would migrate towards the channel centerline and form a single-line particle array under the action of elastic force while the particles suspended in Newtonian fluids would migrate to form a famous Segré-Silberberg particle annular ring due to the effects of inertial lift forces. Second, the effects of particle size and driving flow rate on particle viscoelastic focusing are quantitatively analyzed. Results show that with increasing flow rate the focusing degree increases and finally stabilize at a certain value, and the large particles have better focusing quality than the small ones. Finally, the dynamic focusing process of particles along the channel length is investigated. A mathematical model of safe channel length for achieving particle focusing is derived and validated by experiments. It is found that the safe channel length for large particles is significantly shorter than that for small ones. The obtained results would improve the understanding of particle focusing processes and mechanisms, and help realize the flexible control of particle migration behaviors in non-Newtonian fluids.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51375089), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110092110003), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011336).
    [1]

    Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128

    [2]

    Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38

    [3]

    Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89

    [4]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702

    [5]

    Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871

    [6]

    Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567

    [7]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [8]

    Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 物理学报 63 154701]

    [9]

    Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571

    [10]

    Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344

    [11]

    Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297

    [12]

    Ho B P, Leal L G 1976 J. Fluid Mech. 76 783

    [13]

    Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197

    [14]

    Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73

    [15]

    Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501

    [16]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1

    [17]

    Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471

    [18]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396

    [19]

    Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120

    [20]

    Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263

    [21]

    Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347

    [22]

    Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258

    [23]

    Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266

    [24]

    James D F 1966 Nature 212 754

    [25]

    Merrington A C 1943 Nature 152 663

    [26]

    Weissenberg K 1947 Nature 159 310

    [27]

    James D F 2009 Annu. Rev. Fluid Mech. 41 129

    [28]

    Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011

    [29]

    Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702

    [30]

    Tehrani M A 1996 J. Rheol. 40 1057

    [31]

    D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638

    [32]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 物理学报 62 24703]

    [33]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [34]

    Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247

    [35]

    Segre G, Silberberg A 1961 Nature 189 209

    [36]

    Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116

    [37]

    Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892

    [38]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [39]

    Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512

  • [1]

    Hsu C H, Di C D, Chen C, Irimia D, Toner M 2008 Lab. Chip 8 2128

    [2]

    Shelby J P, Lim D S W, Kuo J S, Chiu D T 2003 Nature 425 38

    [3]

    Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H 2013 Microfluid Nanofluid 14 89

    [4]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 74702

    [5]

    Yang S, Undar A, Zahn J D 2006 Lab. Chip 6 871

    [6]

    Kang K, Lee S S, Hyun K, Lee S J, Kim J M 2013 Nat. Commun. 4 2567

    [7]

    Hu J, Deng X, Sang S B, Li P W, Li G, Zhang W D 2014 Acta Phys. Sin. 63 207102 (in Chinese) [胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋 2014 物理学报 63 207102]

    [8]

    Sun Y L, Wang C H, Le Z C 2014 Acta Phys. Sin. 63 154701 (in Chinese) [孙运利, 王昌辉, 乐孜纯 2014 物理学报 63 154701]

    [9]

    Karnis A, Mason S G 1966 Trans. Soc. Rheol. 10 571

    [10]

    Gauthier F, Goldsmith H L, Mason S G 1971 Rheol. Acta 10 344

    [11]

    Gauthier F, Goldsmith H L, Mason S G 1971 Trans. Soc. Rheol. 15 297

    [12]

    Ho B P, Leal L G 1976 J. Fluid Mech. 76 783

    [13]

    Gao S X, Hartnett J P 1993 Int. Comm. Heat Mass Transfer 20 197

    [14]

    Huang P Y, Feng J, Hu H H, Joseph D D 1997 J. Fluid Mech. 343 73

    [15]

    Leshansky A M, Bransky A, Korin N, Dinnar U 2007 Phys. Rev. Lett. 98 234501

    [16]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2013 J. Non-Newton. Fluid Mech. 195 1

    [17]

    Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M 2012 Anal. Chem. 84 10471

    [18]

    Villone M M, D’Avino G, Hulsen M A, Greco F, Maffettone P L 2011 J. Non-Newton. Fluid Mech. 166 1396

    [19]

    Lim E J, Ober T J, Edd J F, Desai S P, Neal D, Bong K W, Doyle P S, McKinley G H, Toner M 2014 Nat. Commun. 5 4120

    [20]

    Del G F, Romeo G, D’Avino G, Greco F, Netti P A, Maffettone P L 2013 Lab. Chip 13 4263

    [21]

    Nam J, Lim H, Kim D, Jung H, Shin S 2012 Lab. Chip 12 1347

    [22]

    Lee D J, Brenner H, Youn J R, Song Y S 2013 Sci. Rep. 3 3258

    [23]

    Yang S, Kim J Y, Lee S J, Lee S S, Kim J M 2011 Lab. Chip 11 266

    [24]

    James D F 1966 Nature 212 754

    [25]

    Merrington A C 1943 Nature 152 663

    [26]

    Weissenberg K 1947 Nature 159 310

    [27]

    James D F 2009 Annu. Rev. Fluid Mech. 41 129

    [28]

    Yang S, Lee S S, Ahn S W, Kang K, Shim W, Lee G, Hyun K, Kim J M 2012 Soft Matter 8 5011

    [29]

    Won Seo K, Ran H Y, Joon L S 2014 Appl. Phys. Lett. 104 213702

    [30]

    Tehrani M A 1996 J. Rheol. 40 1057

    [31]

    D’Avino G, Romeo G, Villone M M, Greco F, Netti P A, Maffettone P L 2012 Lab. Chip 12 1638

    [32]

    Sun D K, Xiang N, Chen K, Ni Z H 2013 Acta Phys. Sin. 62 24703 (in Chinese) [孙东科, 项楠, 陈科, 倪中华 2013 物理学报 62 24703]

    [33]

    Sun D K, Xiang N, Jiang D, Chen K, Yi H, Ni Z H 2013 Chin. Phys. B 22 114704

    [34]

    Kang A, Ahn S, Lee S, Lee B, Lee S, Kim J 2011 Korea-Aust. Rheol. J: 23 247

    [35]

    Segre G, Silberberg A 1961 Nature 189 209

    [36]

    Xiang N, Yi H, Chen K, Sun D, Jiang D, Dai Q, Ni Z H 2013 Biomicrofluidics 7 44116

    [37]

    Di C D, Irimia D, Tompkins R G, Toner M 2007 Proc. Natl. Acad. Sci. U. S. A 104 18892

    [38]

    Asmolov E S 1999 J. Fluid Mech. 381 63

    [39]

    Seo K W, Byeon H J, Huh H K, Lee S J 2014 RSC Adv. 4 3512

  • [1] Zhang Jing-Qi, Hao Qi, Lyu Guo-Jian, Xiong Bi-Jin, Qiao Ji-Chao. Understanding stress relaxation behavior of amorphous polystyrene based on microstructural heterogeneity. Acta Physica Sinica, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] Zheng Suo-Sheng, Huang Yao, Zou Kun, Peng Yi-Tian. Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, 2022, 71(5): 054701. doi: 10.7498/aps.71.20211921
    [3] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [4] Numerical simulation of flow pattern for non-Newtonian flow in agitated thin film evaporator. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211921
    [5] Wang Xing-Zheng, Yang Chen-Jing, Cai Li-Heng, Chen Dong. The rheology property of organogels based on 3D helical nanofilament bnetworks self-assembled by bent-core liquid crystals. Acta Physica Sinica, 2020, 69(8): 086102. doi: 10.7498/aps.69.20200332
    [6] Shen Xue-Feng, Cao Yu, Wang Jun-Feng, Liu Hai-Long. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability. Acta Physica Sinica, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [7] Wang Yang, Zhao Ling-Ling. Viscoelastic relaxation time of the monoatomic Lennard-Jones system. Acta Physica Sinica, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [8] Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Physica Sinica, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [9] Liao Guang-Kai, Long Zhi-Lin, Xu Fu, Liu Wei, Zhang Zhi-Yang, Yang Miao. Investigation on the viscoelastic behavior of an Fe-base bulk amorphous alloys based on the fractional order rheological model. Acta Physica Sinica, 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [10] Xu Shao-Feng, Wang Jiu-Gen. Dissipative particle dynamics simulation of macromolecular solutions under Poiseuille flow in microchannels. Acta Physica Sinica, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [11] Yang Bin-Xin, Ouyang Jie. Simulation of residual stress in viscoelastic mold filling process. Acta Physica Sinica, 2012, 61(23): 234602. doi: 10.7498/aps.61.234602
    [12] Xiong Yi, Zhang Xiang-Jun, Zhang Xiao-Hao, Wen Shi-Zhu. Investigation on viscoelastic behaviors of near-interface 5CB liquid crystal under electric field with quartz crystal microbalance. Acta Physica Sinica, 2010, 59(11): 7998-8004. doi: 10.7498/aps.59.7998
    [13] Wang Yu, Ouyang Jie, Yang Bin-Xin. Analysis on fractional Oldroyd-B viscoelastic Poiseuille flow by numerical inversion of Laplace transforms. Acta Physica Sinica, 2010, 59(10): 6757-6763. doi: 10.7498/aps.59.6757
    [14] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] Zhang Hong-Ping, Ouyang Jie, Ruan Chun-Lei. A multi-scale model with GENERIC structure of polymeric melt with fiber suspensions. Acta Physica Sinica, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [16] Guo Yong-Cun, Zeng Yi-Shan, Lu De-Tang. The non-Newtonian fluid mathematical model for strata static temperature forecast. Acta Physica Sinica, 2005, 54(2): 802-806. doi: 10.7498/aps.54.802
    [17] Du Qi-Zhen. Wavefield forward modeling with the pseudo-spectral method in viscoelastic and azimuthally anisotropic media. Acta Physica Sinica, 2004, 53(12): 4428-4434. doi: 10.7498/aps.53.4428
    [18] Du Qi-Zhen, Yang Hui-Zhu. Viscoelastic wave equations of seismic multi-wave in fractured media. Acta Physica Sinica, 2004, 53(8): 2801-2806. doi: 10.7498/aps.53.2801
    [19] Du Qi-Zhen, Yang Hui-Zhu. Finite-element methods for viscoelastic and azimuthally anisotropic media. Acta Physica Sinica, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
    [20] Du Qi-Zhen, Yang Hui-Zhu. . Acta Physica Sinica, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
Metrics
  • Abstract views:  4615
  • PDF Downloads:  1891
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2014
  • Accepted Date:  29 January 2015
  • Published Online:  05 August 2015

/

返回文章
返回