Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method

Hu Jin-Xiu Gao Xiao-Wei

Citation:

Reduced order model analysis method via proper orthogonal decomposition for variable coefficient of transient heat conduction based on boundary element method

Hu Jin-Xiu, Gao Xiao-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Boundary element method (BEM) is widely used in engineering analysis, especially in solving the transient heat conduction problem because of the advantage that only boundary of the problem needs to be discretized into elements. The general procedure of solving the variable-coefficient transient heat conduction problem by using the BEM is as follows. First, the governing differential equations are transformed into the boundary-domain integral equations by adopting the basic solution of the linear and homogeneous heat conduction problemGreen function. Second, domain integrals in the integral equation are converted into boundary integrals by the radial integral method or the dual reciprocity method. Finally, the time difference propulsion technology is used to solve the discrete time differential equations. A large number of practical examples verify the correctness and validity of the BEM in solving the variable coefficient of transient heat conduction problem. However, two deficiencies are encountered when the system of time differential equations is solved with the time difference method, i.e., one is the stability of the algorithm, which is closely related to the time step size, and the other is time-consuming when the freedom degree of the problem is large and all specified time steps are considered, because a system of linear equations needs to be solved in each time step. Therefore, in this paper we present a reduced order model analysis method of solving the variable-coefficient transient heat conduction problem based on BEM by using the model reduction method of proper orthogonal decomposition (POD). For variable-coefficient transient heat conduction problems, the discrete integral equations which are suitable for order reduction operation are deduced by using the BEM, the reduced order model is established by using the model reduction method of POD, and a lowdimensional approximate description of the transient heat conduction problem under time-varying boundary condition is obtained by projection of the initial discrete integral equations on some few dominant POD modes obtained from the problem under constant boundary conditions. First, for a variable coefficient transient heat conduction problem, boundary-domain integral equations are established and the domain integrals are transformed into boundary integrals by using the radial integration method. Second, the time differential equations with discrete format which is suitable for order reduction operation are obtained by reorganizing the integral equations. Third, the POD modes are developed by calculating the eigenvectors of an autocorrelation matrix composed of snapshots which are clustered by the given results obtained from experiments, BEM or other numerical methods for transient heat transfer problem with constant boundary conditions. Finally, the reduced order model is established and solved by projecting the time differential equations on reduced POD modes. Examples show that the method developed in this paper is correct and effective. It is shown that 1) the low order POD modes determined under constant boundary conditions can be used to accurately analyze the temperature field of transient heat conduction problems with the same geometric domain but a variety of smooth and time-varying boundary conditions; 2) the establishment of low order model solves the problem of heavy workload encountered in BEM where a set of large linear equations will be formed and solved in each time step when using the time difference method to solve the large time differential equations.
      Corresponding author: Gao Xiao-Wei, xwgao@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172055).
    [1]

    Brebbia C A, Dominguez J 1992 Boundary Elements: an Introductory Course (London: McGraw-Hill Book Co.) pp52-57

    [2]

    Gao X W, Davies T G 2002 Boundary Element Programming in Mechanics (Cambridge: Cambridge University Press) pp25-33

    [3]

    Gao X W, Peng H F, Yang K, Wang J 2015 Advanced Boundary Element MethodTheory and Application (Beijing: Science Press) pp110-129 (in Chinese) [高效伟, 彭海峰, 杨凯, 王静 2015 高等边界元法理论与程序 (北京: 科学出版社) 第110129页]

    [4]

    Ciskowski R D, Brebbia C A 1991 Boundary Element Methods in Acoustics (Southampton: Elsevier)

    [5]

    Gao X W, Hu J X 2012 Acta Mech. Sin. 44 361 (in Chinese) [高效伟, 胡金秀 2012 力学学报 44 361]

    [6]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [7]

    Li S D, Huang Q B, Li T Y 2012 Acta Phys. Sin. 61 64301 (in Chinese) [李善德, 黄其柏, 李天匀 2012 物理学报 61 64301]

    [8]

    Xu J, Xie W H, Deng Y, Wang K, Luo Z Y, Gong H 2013 Acta Phys. Sin. 62 104204 (in Chinese) [许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉 2013 物理学报 62 104204]

    [9]

    Li S, He H L 2013 Chin. Phys. B 22 24701

    [10]

    Yang K, Gao X W 2010 Eng. Anal. Bound. Elem. 34 557

    [11]

    Gao X W, Wang J 2009 Eng. Anal. Bound. Elem. 33 539

    [12]

    Gao X W, Peng H F, Liu J 2013 Int. J. Heat Mass Transf. 63 183

    [13]

    Peng H F, Bai Y G, Yang K, Gao X W 2013 Eng. Anal. Bound. Elem. 37 1545

    [14]

    Sutradhar A, Paulino G H 2004 Comput. Meth. Appl. Mech. Eng. 193 4511

    [15]

    Erhart K, Divo E, Kassab A J 2006 Eng. Anal. Bound. Elem. 30 553

    [16]

    Mohammadi M. Hematiyan M R, Marin L 2010 Eng. Anal. Bound. Elem. 34 655

    [17]

    Yu B, Yao W A, Gao X W Gao Q 2014 Numer. Heat Transf. Part B: Fundam. 65 155

    [18]

    Gao X W 2002 Eng. Anal. Bound. Elem. 26 905

    [19]

    Gao X W 2005 J. Comput. Appl. Math. 175 265

    [20]

    Hu J X, Peng H F, Gao X W 2014 Math. Probl. Eng. 2014 284106

    [21]

    Hu J X, Zheng B J, Gao X W 2013 Bound. Elem. Mesh. Reduc. Meth. XXXVI 56 153

    [22]

    Nardini D, Brebbia C A 1982 Boundary Element Methods in Engineering (Berlin: Springer) pp312-326

    [23]

    Jiang Y L 2010 Model Reduction Method (Beijing: Science Press) pp1-4 (in Chinese) [蒋耀林 2010 模型降阶方法 (北京: 科学出版社) 第14页]

    [24]

    Chatterjee A 2000 Curr. Sci. 78 808

    [25]

    Liang Y C, Lee H P, Lim S P, Lin W Z, Lee K H Wu C G 2002 J. Sound Vib. 252 527

    [26]

    Fic A, Bialecki R A, Kassab A J 2005 Numer. Heat Transf. Part B: Fundam 48 103

    [27]

    Nie X Y, Yang G W 2015 Acta Aeronaut. Astronaut. Sin. 36 1103 (in Chinese) [聂雪媛, 杨国伟 2015 航空学报 36 1103]

    [28]

    Hu J X, Zheng B J, Gao X W 2015 Sci: China Ser. G 45 014602 (in Chinese) [胡金秀, 郑保敬, 高效伟 2015 中国科学G辑 45 014602]

    [29]

    Dai B D, Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese) [戴保东, 程玉民 2007 物理学报 56 597]

  • [1]

    Brebbia C A, Dominguez J 1992 Boundary Elements: an Introductory Course (London: McGraw-Hill Book Co.) pp52-57

    [2]

    Gao X W, Davies T G 2002 Boundary Element Programming in Mechanics (Cambridge: Cambridge University Press) pp25-33

    [3]

    Gao X W, Peng H F, Yang K, Wang J 2015 Advanced Boundary Element MethodTheory and Application (Beijing: Science Press) pp110-129 (in Chinese) [高效伟, 彭海峰, 杨凯, 王静 2015 高等边界元法理论与程序 (北京: 科学出版社) 第110129页]

    [4]

    Ciskowski R D, Brebbia C A 1991 Boundary Element Methods in Acoustics (Southampton: Elsevier)

    [5]

    Gao X W, Hu J X 2012 Acta Mech. Sin. 44 361 (in Chinese) [高效伟, 胡金秀 2012 力学学报 44 361]

    [6]

    Zhang A M, Yao X L 2008 Chin. Phys. B 17 927

    [7]

    Li S D, Huang Q B, Li T Y 2012 Acta Phys. Sin. 61 64301 (in Chinese) [李善德, 黄其柏, 李天匀 2012 物理学报 61 64301]

    [8]

    Xu J, Xie W H, Deng Y, Wang K, Luo Z Y, Gong H 2013 Acta Phys. Sin. 62 104204 (in Chinese) [许军, 谢文浩, 邓勇, 王侃, 罗召洋, 龚辉 2013 物理学报 62 104204]

    [9]

    Li S, He H L 2013 Chin. Phys. B 22 24701

    [10]

    Yang K, Gao X W 2010 Eng. Anal. Bound. Elem. 34 557

    [11]

    Gao X W, Wang J 2009 Eng. Anal. Bound. Elem. 33 539

    [12]

    Gao X W, Peng H F, Liu J 2013 Int. J. Heat Mass Transf. 63 183

    [13]

    Peng H F, Bai Y G, Yang K, Gao X W 2013 Eng. Anal. Bound. Elem. 37 1545

    [14]

    Sutradhar A, Paulino G H 2004 Comput. Meth. Appl. Mech. Eng. 193 4511

    [15]

    Erhart K, Divo E, Kassab A J 2006 Eng. Anal. Bound. Elem. 30 553

    [16]

    Mohammadi M. Hematiyan M R, Marin L 2010 Eng. Anal. Bound. Elem. 34 655

    [17]

    Yu B, Yao W A, Gao X W Gao Q 2014 Numer. Heat Transf. Part B: Fundam. 65 155

    [18]

    Gao X W 2002 Eng. Anal. Bound. Elem. 26 905

    [19]

    Gao X W 2005 J. Comput. Appl. Math. 175 265

    [20]

    Hu J X, Peng H F, Gao X W 2014 Math. Probl. Eng. 2014 284106

    [21]

    Hu J X, Zheng B J, Gao X W 2013 Bound. Elem. Mesh. Reduc. Meth. XXXVI 56 153

    [22]

    Nardini D, Brebbia C A 1982 Boundary Element Methods in Engineering (Berlin: Springer) pp312-326

    [23]

    Jiang Y L 2010 Model Reduction Method (Beijing: Science Press) pp1-4 (in Chinese) [蒋耀林 2010 模型降阶方法 (北京: 科学出版社) 第14页]

    [24]

    Chatterjee A 2000 Curr. Sci. 78 808

    [25]

    Liang Y C, Lee H P, Lim S P, Lin W Z, Lee K H Wu C G 2002 J. Sound Vib. 252 527

    [26]

    Fic A, Bialecki R A, Kassab A J 2005 Numer. Heat Transf. Part B: Fundam 48 103

    [27]

    Nie X Y, Yang G W 2015 Acta Aeronaut. Astronaut. Sin. 36 1103 (in Chinese) [聂雪媛, 杨国伟 2015 航空学报 36 1103]

    [28]

    Hu J X, Zheng B J, Gao X W 2015 Sci: China Ser. G 45 014602 (in Chinese) [胡金秀, 郑保敬, 高效伟 2015 中国科学G辑 45 014602]

    [29]

    Dai B D, Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese) [戴保东, 程玉民 2007 物理学报 56 597]

  • [1] Chen Shu-Quan, Wang Jian, Yang Zhen, Zhu Can, Luo Feng, Zhu Xin-Qiang, Xu Feng, Wang Jia-Fu, Zhang Yan, Liu Hong-Xia, Sun Zhi-Gang. Peltier coefficient measured by steady-state method and transient-state method. Acta Physica Sinica, 2023, 72(6): 068401. doi: 10.7498/aps.72.20222255
    [2] Wang Xue-Zhi, Tang Yu-Ting, Che Jun-Wei, Linghu Jia-Jun, Hou Zhao-Yang. Mechanism of amorphous-like thermal conductivity in binary oxide Yb3TaO7. Acta Physica Sinica, 2023, 72(5): 056101. doi: 10.7498/aps.72.20221581
    [3] Li Tao, Cheng Xi-Ming, Hu Chen-Hua. Comparative study of reduced-order electrochemical models of the lithium-ion battery. Acta Physica Sinica, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] Bao Li-Ping, Li Wen-Yan, Wu Li-Qun. Singularly perturbed solutions of a class of non-Fourier temperature field distribution. Acta Physica Sinica, 2019, 68(20): 204401. doi: 10.7498/aps.68.20190144
    [5] Jiang Tao, Chen Zhen-Chao, Ren Jin-Lian, Li Gang. Simulation of three-dimensional transient heat conduction problem with variable coefficients based on the improved parallel smoothed particle hydrodynamics method. Acta Physica Sinica, 2017, 66(13): 130201. doi: 10.7498/aps.66.130201
    [6] Feng De-Shan, Yang Dao-Xue, Wang Xun. Ground penetrating radar numerical simulation with interpolating wavelet scales method and research on fourth-order Runge-Kutta auxiliary differential equation perfectly matched layer. Acta Physica Sinica, 2016, 65(23): 234102. doi: 10.7498/aps.65.234102
    [7] Jiao Bao-Bao. Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix. Acta Physica Sinica, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [8] Luo Jia-Qi, Duan Yan-Hui, Xia Zhen-Hua. Transonic flow reconstruction by an adaptive proper orthogonal decomposition hybrid model. Acta Physica Sinica, 2016, 65(12): 124702. doi: 10.7498/aps.65.124702
    [9] Liu Fei-Fei, Wei Shou-Shui, Wei Chang-Zhi, Ren Xiao-Fei. Use of velocity source immersed boundary-lattice Boltzmann method to study bionic micro-fluidic driving model. Acta Physica Sinica, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [10] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Study on bubble dynamics near plate with hole based on boundary element method. Acta Physica Sinica, 2013, 62(14): 144703. doi: 10.7498/aps.62.144703
    [11] Xu Jun, Xie Wen-Hao, Deng Yong, Wang Kan, Luo Zhao-Yang, Gong Hui. Fast multipole boundary element method for diffuse optical tomography. Acta Physica Sinica, 2013, 62(10): 104204. doi: 10.7498/aps.62.104204
    [12] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Research on interaction between bubble and surface waves based on BEM. Acta Physica Sinica, 2012, 61(22): 224702. doi: 10.7498/aps.61.224702
    [13] Zha Xiao-Ming, Zhang Yang, Sun Jian-Jun, Fan You-Ping. New equivalence method of integrated three-phase AC-DC system based on differential homology and chaotic analysis. Acta Physica Sinica, 2012, 61(2): 020505. doi: 10.7498/aps.61.020505
    [14] Wang Xing-Yuan, Ren Xiao-Li, Zhang Yong-Lei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters. Acta Physica Sinica, 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [15] Li Shan-De, Huang Qi-Bai, Li Tian-Yun. A new diagonal form fast multipole boundary element method for solving acoustic Helmholtz equation. Acta Physica Sinica, 2012, 61(6): 064301. doi: 10.7498/aps.61.064301
    [16] Qi Yue-Feng, Qiao Han-Ping, Bi Wei-Hong, Liu Yan-Yan. Heat transfer characteristics in fabrication of heat method in photonic crystal fiber grating. Acta Physica Sinica, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [17] Jiang Tao, Ouyang Jie, Li Xue-Juan, Zhang Lin, Ren Jin-Lian. The first order symmetric SPH method for transient heat conduction problems. Acta Physica Sinica, 2011, 60(9): 090206. doi: 10.7498/aps.60.090206
    [18] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Yao Xiong-Liang. Numerical simulation of bubbles coupled with an elastic membrane. Acta Physica Sinica, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [19] Liu Yong, Xie Yong. Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Physica Sinica, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [20] Chen Li, Cheng Yu-Min. Complex variable reproducing kernel particle method for transient heat conduction problems. Acta Physica Sinica, 2008, 57(10): 6047-6055. doi: 10.7498/aps.57.6047
Metrics
  • Abstract views:  5502
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2015
  • Accepted Date:  24 August 2015
  • Published Online:  05 January 2016

/

返回文章
返回