Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on improving hohlraum wall reemission ratio by low density gold foam

Zhang Lu Dong Yun-Song Jing Long-Fei Lin Zhi-Wei Tan Xiu-Lan Kuang Long-Yu Li Hang Shang Wan-Li Zhang Wen-Hai Li Zhi-Chao Zhan Xia-Yu Yuan Guang-Hui Li Hai Jiang Shao-En Yang Jia-Min Ding Yong-Kun

Citation:

Experimental study on improving hohlraum wall reemission ratio by low density gold foam

Zhang Lu, Dong Yun-Song, Jing Long-Fei, Lin Zhi-Wei, Tan Xiu-Lan, Kuang Long-Yu, Li Hang, Shang Wan-Li, Zhang Wen-Hai, Li Zhi-Chao, Zhan Xia-Yu, Yuan Guang-Hui, Li Hai, Jiang Shao-En, Yang Jia-Min, Ding Yong-Kun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is important to improve the hohlraum radiation temperature for the research of high energy density physics, especially for study of inertial confinement fusion. Increasing the wall reemission ratio is an effective way to improve the temperature. It is found in theory that low density foam could reduce hohlraum wall energy loss, and then increase hohlraum temperature. In previous studies, experiments have shown that laser-to-X-ray conversion is enhanced by Au foam. However, improving reemission ratio is more important to increase hohlraum radiation temperature, because most of energy is lost in the wall.In this paper, we report our experiments carried out on SGⅢ prototype to compare the X-ray flux reemitted by Au foam and that by Au. For the experimental design, Au solid and Au foam are irradiated symmetrically along the axis by hohlraum radiation source Tr(t), which is assessed by broadband X-ray spectrometer flat-response X-ray diodes. The measured peak temperature is about 190 eV. Reemission flux from sample is measured by transmission grating spectrometer (TGS). The space-resolved image for pure Au sample shows that the hohlraum radiation is asymmetrical along the axis in the experimental conditions, temperature of top is higher than that at the bottom, which is consistent with simulation results obtained by using IRAD3D code. In order to compare the reemission flux from Au solid sample and that from Au foam sample in same conditions, we need to correct the symmetry of hohlraum radiation. By multiplying the ratio of top flux to bottom flux in pure Au target by the bottom flux in Au-Au foam target, where Au foam is on, we make sure that they are ablated by the same radiation source. The calculated results show that X-ray flux is increased by 20% by Au foam of 0.4 g/cc density when the hohlraum temperature is 190 eV. The typical observed time-integrated X-ray reemission spectra for Au solid and Au foam by TGS are also shown. We see that N-band and O-band reemission are clearly enhanced by Au foam, and the O-band reemission is almost the same as M-band reemission. The increased flux concentrates below 1 keV of the soft X-ray emission.The self-similar solution results and MULTI 1D simulation results show that the wall loss energy fraction is saved by Au foam, whose relation to reemission flux can be described by a simple expression. The theoretical solution shows that the emission flux increases about 10%, and the MULTI simulation indicates that the emission flux increases about 6.8%. They are in qualitative agreement with the experiments results. These results show an alluring prospect for Au foam to be used as hohlraum wall.
    [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211

    [3]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [4]

    Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106

    [5]

    Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201

    [6]

    Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005

    [7]

    Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 物理学报 60 055207]

    [8]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)

    [9]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [10]

    Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092

    [11]

    Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093

    [12]

    Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [15]

    Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105

    [16]

    Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102

    [17]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504

    [19]

    Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459

    [20]

    Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 物理学报 62 170602]

    [21]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [22]

    Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779

    [23]

    Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002

  • [1]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [2]

    Meyers M A, Gregori F, Kad B K, Schneider M S, Kalantar D H, Remington B A, Ravichandran G, Boehly T, Wark J S 2003 Acta Mater. 51 1211

    [3]

    Bailey J E, Rochau G A, Mancini R C, Iglesias C A, MacFarlane J J, Golovkin I E, Pain J C, Gilleron F, Blancard C, Cosse P, Faussurier G, Chandler G A, Nash T J, Nielsen D S, Lake P W 2008 Rev. Sci. Instrum. 79 113104

    [4]

    Li L L, Zhang L, Jiang S E, Guo L, Qing B, Li Z C, Zhang J Y, Yang J M, Ding Y K 2014 Appl. Phys. Lett. 104 054106

    [5]

    Zhang J Y, Yang J M, Jiang S E, Li Y S, Yang G H, Ding Y N, Huang Y X, Hu X 2010 Chin. Phys. B 19 025201

    [6]

    Amendt P, Landen O L, Robey H F, Li C K, Petrasso R D 2010 Phys. Rev. Lett. 105 115005

    [7]

    Li S W, Song T M, Yi R Q, Cui Y L, Jiang X H, Wang Z B, Yang J M, Jiang S E 2011 Acta Phys. Sin. 60 055207 (in Chinese) [李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩 2011 物理学报 60 055207]

    [8]

    Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press)

    [9]

    Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311

    [10]

    Suter L, Rothenberg J, Munro D, Wonterghen B V, Haan S 2000 Phys. Plasmas 7 2092

    [11]

    Chaurasia S, Munda D S, Tripathi S, Kumar M, Gupta N K, Dhareshwar L J, Bajaj P N 2010 J. Phys.: Conf. Ser. 208 012093

    [12]

    Li X, Lan K, Meng X J, He X T, Lai D X, Feng T G 2010 Laser Part. Beams 28 75

    [13]

    Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403

    [14]

    Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301

    [15]

    Shang W L, Yang J M, Dong Y S 2013 Appl. Phys. Lett. 102 094105

    [16]

    Dong Y S, Zhang L, Yang J M, Shang W L 2013 Phys. Plasmas 20 123102

    [17]

    Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504

    [19]

    Huang Y B, Jiang S E, Li H Y, Wang Q F, Chen L P 2014 Comput. Phys. Commun. 185 459

    [20]

    Shang W L, Zhu T, Kuang L Y, Zhang W H, Zhao Y, Xiong G, Yi R Q, Li S W, Yang J M 2013 Acta Phys. Sin. 62 170602 (in Chinese) [尚万里, 朱托, 况龙钰, 张文海, 赵阳, 熊刚, 易荣清, 李三伟, 杨家敏 2013 物理学报 62 170602]

    [21]

    Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475

    [22]

    Sigel R, Pakula R, Sakabe S, Tsakiris D 1988 Phys. Rev. A 38 5779

    [23]

    Jones O S, Glenzer S H, Suter L J, Turner R E, Campbell K M, Dewald E L, Hammel B A, Hammer J H, Kauffman R L, Landen O L, Rosen M D, Wallace R J, Weber F A 2004 Phys. Rev. Lett. 93 065002

  • [1] Li Hang,  Yang Dong,  Li San-Wei,  Kuang Long-Yu,  Li Li-Ling,  Yuan Zheng,  Zhang Hai-Ying,  Yu Rui-Zhen,  Yang Zhi-Wen,  Chen Tao,  Cao Zhu-Rong,  Pu Yu-Dong,  Miao Wen-Yong,  Wang Feng,  Yang Jia-Min,  Jiang Shao-En,  Ding Yong-Kun,  Hu Guang-Yue,  Zheng Jian. Observation of hydrodynamic phenomena of plasma interaction in hohlraums. Acta Physica Sinica, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [2] Meng Shi-Jian, Huang Zhan-Chang, Ning Jia-Min, Hu Qing-Yuan, Ye Fan, Qin Yi, Xu Ze-Ping, Xu Rong-Kun. Shock X-ray emission image measurement in Z-pinch dynamic hohlraum. Acta Physica Sinica, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [3] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [4] Li Shu, Lan Ke, Lai Dong-Xian, Liu Jie. Monte Carlo simulation of the radiation transport of spherical holhraum. Acta Physica Sinica, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [5] Jiang Shu-Qing, Ning Jia-Min, Chen Fa-Xin, Ye Fan, Xue Fei-Biao, Li Lin-Bo, Yang Jian-Lun, Chen Jin-Chuan, Zhou Lin, Qin Yi, Li Zheng-Hong, Xu Rong-Kun, Xu Ze-Ping. Preliminary experimental study on implosion dynamics and radiation character of Z-pinch dynamic hohlraum. Acta Physica Sinica, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [6] Wang Feng, Peng Xiao-Shi, Yang Dong, Li Zhi-Chao, Xu Tao, Wei Hui-Yue, Liu Shen-Ye. Backscattered Light diagnostic technique on Shen Guang-III prototype Laser Facility. Acta Physica Sinica, 2013, 62(17): 175202. doi: 10.7498/aps.62.175202
    [7] Zhang Lu, Yang Jia-Min. Pressure increase in foam-solid target from X-ray driven shock waves. Acta Physica Sinica, 2012, 61(4): 045203. doi: 10.7498/aps.61.045203
    [8] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [9] Zhao Xue-Feng, Li San-Wei, Jiang Gang, Wang Chuan-Ke, Li Zhi-Chao, Hu Feng, Li Chao-Guang. Monte Carlo simulation of hard X-ray producedby suprathermal electrons interactionwith golden hohlraum targets. Acta Physica Sinica, 2011, 60(7): 075203. doi: 10.7498/aps.60.075203
    [10] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [11] Li San-Wei, Yi Rong-Qing, Jiang Xiao-Hua, He Xiao-An, Chui Yan-Li, Liu Yong-Gang, Ding Yong-Kun, Liu Shen-Ye, Lan Ke, Li Yong-Sheng, Wu Chang-Shu, Gu Pei-Jun, Pei Wen-Bing, He Xian-Tu. Experimental study of radiation temperature for gold hohlraum heated with 1 ns,0.35 μm lasers on SG-Ⅲ prototype laser facility. Acta Physica Sinica, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [12] Zheng Xin-Liang, Li Guang-Shan, Zhong Shou-Xian, Tian Jin-Shou, Li Zhen-Hong, Ren Zhao-Yu. Ablating of carbon nanotube by laser beam and its effect on field emission performance. Acta Physica Sinica, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [13] Zhang Wei-Jia, Wang Tian-Min, Zhong Li-Zhi, Wu Xiao-Wen, Cui Min. Theoretical study of infrared emissivity of indium tin oxide films. Acta Physica Sinica, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [14] Jiang Shao-En, Li Wen-Hong, Sun Ke-Xi, Jiang Xiao-Hua, Liu Yong-Gang, Cui Yan-Li, Chen Jiu-Sen, Ding Yong-Kun, Zheng Zhi-Jian. Shock wave driven by x-ray radiation from cylindrical hohlraum on Shenguang Ⅱlaser. Acta Physica Sinica, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [15] Sun Ke-Xu, Huang Tian-Xuan, Ding Yong-Kun, Yi Rong-Qing, Jiang Shao-En, Cui Yan-Li, Tang Xiao-Qing, Chen Jiu-Lin, Zhang Bao-Han, Zheng Zhi-Jian. . Acta Physica Sinica, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [16] Ye Wen-Hua, Zhang Wei-Yan, He Xian-Shi. . Acta Physica Sinica, 2000, 49(4): 762-767. doi: 10.7498/aps.49.762
    [17] YANG JIA-MIN, DING YAO-NAN, SUN KE-XU, HUANG TIAN-XUAN, ZHANG WEN-HAI, WANG YAO-MEI, HU XIN, ZHANG BAO-HAN, ZHENG ZHI-JIAN. EXPERIMENTAL STUDY ON X-RAY SPECTRA FROM GOLD FOIL TARGET IRRADIATED BY 1.053μm LASER. Acta Physica Sinica, 2000, 49(12): 2408-2413. doi: 10.7498/aps.49.2408
    [18] HUANG TIAN-XUAN, SUN KE-XU, HENG ZHI-JIAN, YI RONG-QING, DING YONG-KUN, DING YAO-NAN, CUI YAN-LI, TANG DAO-YUAN. X-RAY REEMISSION FROM GOLD DISK TARGETS HEATED BY SOFT X-RAY RADIATION. Acta Physica Sinica, 1998, 47(1): 40-46. doi: 10.7498/aps.47.40
    [19] ZHANG JUN, PEI WEN-BING, GU PEI-JUN, SUI CHENG-ZHI, CHANG TIE-QIANG. SELF-MODIFIED QUASI-STATIONARY MODEL FOR THE RADIATION ABLATION. Acta Physica Sinica, 1996, 45(10): 1677-1687. doi: 10.7498/aps.45.1677
    [20] Ding Yong-Kun, Li Wen-Hong, Jiang Xiao-Hua, Li San-Wei, Zhao Xue-Wei, Wang Hong-Bin, Ding Yao-Nan, Liu Zhong-Li, Tang Dao-Yuan, Zheng Zhi-Jian, Jiang Wen-Mian. . Acta Physica Sinica, 1995, 44(3): 350-356. doi: 10.7498/aps.44.350
Metrics
  • Abstract views:  5118
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2015
  • Accepted Date:  16 October 2015
  • Published Online:  05 January 2016

/

返回文章
返回