Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Collision reactions of CH radical on diamond and their effects on the carbon film growth

Song Qing Quan Wei-Long Feng Tian-Jun E Yan

Citation:

Collision reactions of CH radical on diamond and their effects on the carbon film growth

Song Qing, Quan Wei-Long, Feng Tian-Jun, E Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The growth mechanism of hydrogenated carbon films in plasma-enhanced chemical vapor deposition (PECVD) is complicated and much attention has to be paid to it for the unique properties of carbon films. In this paper molecular dynamics simulations are carried out to illustrate the collision behaviors of CH radical on the clear and hydrogenated diamond (111) surface with varying incident energy (from 1.625 to 65 eV), aiming at the growth mechanism of hydrogenated carbon film by PECVD. Our simulations show that the behaviors of incident CH radical can be divided into adsorbing, rebounding, reaction releasing one H atom and reaction releasing two H atoms, while the reaction releasing one H2molecule rarely occurs. At low incident energy, selective adsorption of CH at unsaturated surface C site is the dominated growth mechanism since no reactions can conduct. Such growth model results in films with rough surface, high hydrogen fraction, and loose structure. As the incident energy increases, two chemical reactions that one releases one H atom and the other releases two H atoms are important. Caused by these reactions, the saturated C site in the surface will be transferred into unsaturated one, so that it can further adsorb subsequently incident CH radicals. The occurrence of these reactions makes films grow more uniformly, leading to the smoothness and dense structure of the films. The hydrogen fraction in the films will be reduced by these reactions. To confirm the above growth mechanism, the carbon film growth from CH radicals are then simulated. The film obtained with low energy (3.25 eV) CH radicals is found to be loose, rough, and have many carbon chains with adsorbed hydrogen atoms on the surfaces, while the film produced with high energy (39 eV) radicals are dense, smooth and the chains on the surfaces are short and have less hydrogens. On the other hand, most of the C atoms in the films deposited with low energy have one H atom as coordination, while for high energy most of C atoms in the films have no H atom as coordination. These observations agree well with the proposed growth mechanism. The destruction effects caused by the incident CH radicals are also analyzed based on the variation of the sp2-C and sp3-C in the films.
      Corresponding author: Song Qing, songqing_lz@126.com
    • Funds: Project supported by the Gansu Natural Science Foundation, China (Grant No. 1310RTZA042), the Gansu University Scientific Study Project, China (Grant No. 212105) and the National Natural Science Foundation of China (Grant No. 51365027).
    [1]

    Erdemir A 2004 Tribo. Inter. 37 577

    [2]

    Bewilogua K, Hofmann D 2014 Surf. Coat. Tech. 242 214

    [3]

    Lin Z Z 2015 Chin. Phys. B 24 068201

    [4]

    Aijaz A, Sarakinos K, Raza M, Jensen J, Helmersson U 2014 Diamond Relat. Mater. 44 117

    [5]

    Polaki S R, Kumar N, Ganesan K, Madapu K, Bahuguna A, Kamruddin M, Dash S, Tyagi A K 2015 Wear 338-339 105

    [6]

    Wang Y J, Li H X, Ji L, Zhao F, Kong Q H, Wang Y X, Liu X H, Quan W L, Zhou H D, Chen J M 2011 Surf. Coat. Tech. 205 3058

    [7]

    Liu D G, Tu J P, Gu C D, Hong C F, Chen R, Yang W S 2010 Surf. Coat. Tech. 205 2474

    [8]

    Wang Y F, Guo J M, Zhao J, Ding D L, He Y Y, Zhang J Y 2015 Mater. Lett. 143 188

    [9]

    Krishnamurthy S, Butenko Y V, Dhanak V R, Hunt M R C, iller L 2013 Carbon 52 145

    [10]

    Dai Y, Dai D D, Yan C X, Huang B B, Han S H 2005 Phys. Rev. B 71 075421

    [11]

    Dai Y, Yan C X, Li A Y, Zhang Y, Han S H 2005 Carbon 43 1009

    [12]

    Ma Y D, Dai Y, Guo M, Huang B B 2012 Phys. Rev. B 85 235448

    [13]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 1129 (in Chinese) [马天宝, 胡元中, 王慧 2007 物理学报 56 1129]

    [14]

    Quan W L, Li H X, Zhao F, Ji L, Du W, Zhou H D, Chen J M 2010 Phys. Lett. A 374 2150

    [15]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 514 (in Chinese) [权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 物理学报 59 514]

    [16]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 3965

    [17]

    Quan W L, Sun X W, Song Q, Fu Z J, Guo P, Tian J H, Chen J M 2012 Appl. Surf. Sci. 263 339

    [18]

    Song Q, Ji L, Quan W L, Zhang L, Tian M, Li H X, Chen J M 2012 Acta Phys. Sin. 61 030701 (in Chinese) [宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏 2012 物理学报 61 030701]

    [19]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [20]

    Li C H, Han X J, Luan Y W, Li J G 2015 Chin. Phys. B 24 116101

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mat. 14 783

    [22]

    Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A, Haark J R 1984 J. Chem. Phys. 81 3684

    [23]

    Hu Y H, Sinnott S B 2004 J. Comput. Phys. 200 251

    [24]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (2nd Ed.) (New York: Cambridge University Press) p308

  • [1]

    Erdemir A 2004 Tribo. Inter. 37 577

    [2]

    Bewilogua K, Hofmann D 2014 Surf. Coat. Tech. 242 214

    [3]

    Lin Z Z 2015 Chin. Phys. B 24 068201

    [4]

    Aijaz A, Sarakinos K, Raza M, Jensen J, Helmersson U 2014 Diamond Relat. Mater. 44 117

    [5]

    Polaki S R, Kumar N, Ganesan K, Madapu K, Bahuguna A, Kamruddin M, Dash S, Tyagi A K 2015 Wear 338-339 105

    [6]

    Wang Y J, Li H X, Ji L, Zhao F, Kong Q H, Wang Y X, Liu X H, Quan W L, Zhou H D, Chen J M 2011 Surf. Coat. Tech. 205 3058

    [7]

    Liu D G, Tu J P, Gu C D, Hong C F, Chen R, Yang W S 2010 Surf. Coat. Tech. 205 2474

    [8]

    Wang Y F, Guo J M, Zhao J, Ding D L, He Y Y, Zhang J Y 2015 Mater. Lett. 143 188

    [9]

    Krishnamurthy S, Butenko Y V, Dhanak V R, Hunt M R C, iller L 2013 Carbon 52 145

    [10]

    Dai Y, Dai D D, Yan C X, Huang B B, Han S H 2005 Phys. Rev. B 71 075421

    [11]

    Dai Y, Yan C X, Li A Y, Zhang Y, Han S H 2005 Carbon 43 1009

    [12]

    Ma Y D, Dai Y, Guo M, Huang B B 2012 Phys. Rev. B 85 235448

    [13]

    Ma T B, Hu Y Z, Wang H 2007 Acta Phys. Sin. 56 1129 (in Chinese) [马天宝, 胡元中, 王慧 2007 物理学报 56 1129]

    [14]

    Quan W L, Li H X, Zhao F, Ji L, Du W, Zhou H D, Chen J M 2010 Phys. Lett. A 374 2150

    [15]

    Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M 2010 Acta Phys. Sin. 59 514 (in Chinese) [权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏 2010 物理学报 59 514]

    [16]

    Gou F, Gleeson M A, Kleyn A W 2007 Surf. Sci. 601 3965

    [17]

    Quan W L, Sun X W, Song Q, Fu Z J, Guo P, Tian J H, Chen J M 2012 Appl. Surf. Sci. 263 339

    [18]

    Song Q, Ji L, Quan W L, Zhang L, Tian M, Li H X, Chen J M 2012 Acta Phys. Sin. 61 030701 (in Chinese) [宋青, 吉利, 权伟龙, 张磊, 田苗, 李红轩, 陈建敏 2012 物理学报 61 030701]

    [19]

    Zhou A, Xiu X Q, Zhang R, Xie Z L, Hua X M, Liu B, Han P, Gu S L, Shi Y, Zheng Y D 2013 Chin. Phys. B 22 017801

    [20]

    Li C H, Han X J, Luan Y W, Li J G 2015 Chin. Phys. B 24 116101

    [21]

    Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys. Condens. Mat. 14 783

    [22]

    Berendsen H J C, Postma J P M, Vangunsteren W F, Dinola A, Haark J R 1984 J. Chem. Phys. 81 3684

    [23]

    Hu Y H, Sinnott S B 2004 J. Comput. Phys. 200 251

    [24]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulations (2nd Ed.) (New York: Cambridge University Press) p308

Metrics
  • Abstract views:  5241
  • PDF Downloads:  109
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2015
  • Accepted Date:  28 October 2015
  • Published Online:  05 February 2016

/

返回文章
返回