Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A simple and effective simulation for electrical conductivity of warm dense titanium

Fu Zhi-Jian Jia Li-Jun Xia Ji-Hong Tang Ke Li Zhao-Hong Quan Wei-Long Chen Qi-Feng

Citation:

A simple and effective simulation for electrical conductivity of warm dense titanium

Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A linear mixture rule has been used to calculate the electrical conductivity of warm dense titanium plasmas in the density and temperature ranges of 10-510 gcm-3 and 1043104 K, in which the interactions among electrons, atoms, and ions are considered systemically. In the first place, the coupling and degeneracy parameters of titanium plasma are shown as a function of density and temperature in the warm dense range. The warm dense titanium plasmas span from weakly coupled, nondegenerate region to strongly coupled, degenerate domain in the whole density and temperature regime. The titanium plasma becomes strongly coupled plasma at higher than 0.22 gcm-3 and almost in the whole temperature range where the coupling parameter ii 1. In particular, the Coulomb interactions become stronger at higher than 0.56 gcm-3 where 10 ii 216. At the same time, the titanium plasma is in the degenerate regime at higher than 0.35 gcm-3 where the degeneracy parameter 1, and is in the nondegenerate or partial degenerate regime at lower than 0.35 gcm-3 where 1. The influence of temperature on the coupling and degeneracy parameters is less than that of the density, and the plasma composition is calculated by the nonideal Saha equation felicitously. Thus the ionization degree decreases with increasing density at lower density, which is due to the thermal ionization in that regime where the free electrons have sufficiently high thermal energy. Meanwhile, the ionization degree increases with the increase of density at higher than 0.1 gcm-3, in which the pressure ionization takes place in the region where the electrons have sufficiently high density and the collisions increase rapidly. There is a minimum for the ionization degree at about 0.1 gcm-3, while the maximum ionization degree reaches 4 at 10 gcm-3. In the whole temperature regime, the titanium plasma is mostly in the partial plasma domain at lower than 1 gcm-3, and becomes completely ionized at higher than 1 gcm-3. The calculated conductivity is in reasonable agreement with the experimental data. At a fixed temperature, there is a minimum in each of the ionization curves at lower than 3104 K. And the position of the minimum is shifted towards decreasing density with increasing temperature. The conductivity monotonously increases as the density increases at a temprature of 3104 K. At a constant density, the conductivity increases with increasing temperature for lower than 0.56 gcm-3, while it decreases with increasing temperature for higher than 0.56 gcm-3. This behavior is connected with the nonmetal to metal transition in a dense plasma regime. So the nonmetal to metal transition in dense titanium plasma occurs at about 0.56 gcm-3 and its corresponding electrical conductivity is 1.5105 -1m-1. Finally, the contour of electrical conductivity of titanium plasma is shown as a function of density and temperature in the whole range. Its electrical conductivity spans a range from 103 to 106 -1m-1. It can be seen that the titanium plasma gradually approaches the semiconducting regime as temperature increases. When the order of magnitude of the electrical conductivity reaches 105 -1m-1, the plasma almost becomes conducting fluid in the higher density range. This also demonstrates that a nonmetal-metal transition has taken place in the warm dense titanium plasma.
      Corresponding author: Fu Zhi-Jian, jianzhifu@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074266, 11071025), the Scientific Research Fund of Chongqing Municipal Education Commission of China (Grant Nos. KJ131222, KJ121209), the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013 A0101001), the foundation of Laboratory of Shock Wave and Detonation Physics, CAEP (Grant No. 9140 C670103150 C67289), the China Postdoctoral Science Foundation (Grant No.2015 M572497), and the Chongqing University of Arts and Sciences Foundation, China (Grant No. R2012DQ05).
    [1]

    DeSilva A, Vunni G 2011 Phys. Rev. E 83 037402

    [2]

    Zaghloul M 2008 Phys. Plasmas 15 042705

    [3]

    Clrouin J, Renaudin P, Laudernet Y, Noiret P, Desjarlais M 2005 Phys. Rev. B 71 064203

    [4]

    Renaudin P, Blancard C, Faussurier G, Noiret P 2002 Phys. Rev. Lett. 88 215001

    [5]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 物理学报 64 108102]

    [6]

    Chen Y Q 2014 Acta Phys. Sin. 63 205201 (in Chinese) [陈艳秋 2014 物理学报 63 205201]

    [7]

    Faussurier G, Blancard C, Renaudin P, Silvestrelli P 2006 Phys. Rev. B 73 75106

    [8]

    Recoules V, Crocombette J 2005 Phys. Rev. B 72 104202

    [9]

    Kim D, Kim I 2003 Phys. Rev. E 68 56410

    [10]

    Recoules V, Renaudin P, Clrouin J, Noiret P, Zrah G 2002 Phys. Rev. E 66 056412

    [11]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E66 025401

    [12]

    Krisch I, Kunze H 1998 Phys. Rev. E 58 6557

    [13]

    Mostovych A, Chan Y 1997 Phys. Rev. Lett. 79 5094

    [14]

    DeSilva A, Kunze H 1994 Phys. Rev. E 49 4448

    [15]

    DeSilva A, Katsouros J 1998 Phys. Rev. E 57 5945

    [16]

    Tkachenko I, Fernandez de Cordoba P 1998 Phys. Rev. E 57 2222

    [17]

    Redmer R 1999 Phys. Rev. E 59 1073

    [18]

    Kuhlbrodt S, Redmer R 2000 Phys. Rev. E 62 7191

    [19]

    Grinenko A, Gurovich V T, Saypin A, Efimov S, Krasik Y E, Oreshkin V 2005 Phys. Rev. E 72 066401

    [20]

    Barysevich A E, Cherkas S L 2011 Phys. Plasmas 18 052703

    [21]

    Sheftman D, Krasik Y E 2010 Phys. Plasmas 17 112702

    [22]

    Haun J, Kunze H, Kosse S, Schlanges M, Redmer R 2002 Phys. Rev. E 65 46407

    [23]

    Haun J, Kosse S, Kunze H, Schlanges M, Redmer R 2001 Contrib. Plasma Phys. 41 275

    [24]

    Haun J 2000 Contrib. Plasma Phys. 40 126

    [25]

    Kloss A, Motzke T, Grossjohann R, Hess H 1996 Phys. Rev. E 54 5851

    [26]

    Likalter A 1997 Phys. Scr. 55 114

    [27]

    Saleem S, Haun J, Kunze H 2001 Phys. Rev. E 64 56403

    [28]

    Saleem S 2001 Ph. D. Dissertation (Bochum: Ruhr-Universitat)

    [29]

    Desjarlais M 2001 Contrib. Plasma Phys. 41 267

    [30]

    Redmer R, Ropke G, Beule D, Ebeling W 1999 Contrib. Plasma Phys. 39 25

    [31]

    Adams J, Reinholz H, Redmer R, Mintsev V, Shilkin N, Gryaznov V 2007 Phys. Rev. E 76 36405

    [32]

    Redmer R 1997 Phys. Rep. 282 35

    [33]

    Recoules V, Lambert F, Decoster A, Canaud B, Clrouin J 2009 Phys. Rev. Lett. 102 075002

    [34]

    Glenzer S, Redmer R 2009 Rev. Mod. Phys. 81 1625

    [35]

    Kress J, Cohen J, Kilcrease D, Horner D, Collins L 2011 Phys. Rev. E 83 026404

    [36]

    Kress J, Cohen J, Horner D, Lambert F, Collins L 2010 Phys. Rev. E 82 036404

    [37]

    Zaghloul M 2004 Phys. Rev. E 69 026702

    [38]

    Kim D, Kim I 2007 Contrib. Plasma Phys. 47 173

    [39]

    Zaghloul M, Bourham M, Doster J 2000 Phys. Lett. A 266 34

    [40]

    Zaghloul M, Bourham M, Doster J, Powell J 1999 Phys. Lett. A 262 86

    [41]

    Bespalov I M, Polishchuk A Y 1989 Sov. Tech. Phys. Lett. 15 39

    [42]

    Salzmann D, Krumbein A 1978 J. Appl. Phys. 49 3229

    [43]

    Reinholz H, Redmer R, Nagel S 1995 Phys. Rev. E 52 5368

    [44]

    Kietzmann A, Holst B, Redmer R, Desjarlais M, Mattsson T 2007 Phys. Rev. Lett. 98 190602

  • [1]

    DeSilva A, Vunni G 2011 Phys. Rev. E 83 037402

    [2]

    Zaghloul M 2008 Phys. Plasmas 15 042705

    [3]

    Clrouin J, Renaudin P, Laudernet Y, Noiret P, Desjarlais M 2005 Phys. Rev. B 71 064203

    [4]

    Renaudin P, Blancard C, Faussurier G, Noiret P 2002 Phys. Rev. Lett. 88 215001

    [5]

    Fan D, Huang Z C, Huang J K, Wang X X, Huang Y 2015 Acta Phys. Sin. 64 108102 (in Chinese) [樊丁, 黄自成, 黄健康, 王新鑫, 黄勇 2015 物理学报 64 108102]

    [6]

    Chen Y Q 2014 Acta Phys. Sin. 63 205201 (in Chinese) [陈艳秋 2014 物理学报 63 205201]

    [7]

    Faussurier G, Blancard C, Renaudin P, Silvestrelli P 2006 Phys. Rev. B 73 75106

    [8]

    Recoules V, Crocombette J 2005 Phys. Rev. B 72 104202

    [9]

    Kim D, Kim I 2003 Phys. Rev. E 68 56410

    [10]

    Recoules V, Renaudin P, Clrouin J, Noiret P, Zrah G 2002 Phys. Rev. E 66 056412

    [11]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E66 025401

    [12]

    Krisch I, Kunze H 1998 Phys. Rev. E 58 6557

    [13]

    Mostovych A, Chan Y 1997 Phys. Rev. Lett. 79 5094

    [14]

    DeSilva A, Kunze H 1994 Phys. Rev. E 49 4448

    [15]

    DeSilva A, Katsouros J 1998 Phys. Rev. E 57 5945

    [16]

    Tkachenko I, Fernandez de Cordoba P 1998 Phys. Rev. E 57 2222

    [17]

    Redmer R 1999 Phys. Rev. E 59 1073

    [18]

    Kuhlbrodt S, Redmer R 2000 Phys. Rev. E 62 7191

    [19]

    Grinenko A, Gurovich V T, Saypin A, Efimov S, Krasik Y E, Oreshkin V 2005 Phys. Rev. E 72 066401

    [20]

    Barysevich A E, Cherkas S L 2011 Phys. Plasmas 18 052703

    [21]

    Sheftman D, Krasik Y E 2010 Phys. Plasmas 17 112702

    [22]

    Haun J, Kunze H, Kosse S, Schlanges M, Redmer R 2002 Phys. Rev. E 65 46407

    [23]

    Haun J, Kosse S, Kunze H, Schlanges M, Redmer R 2001 Contrib. Plasma Phys. 41 275

    [24]

    Haun J 2000 Contrib. Plasma Phys. 40 126

    [25]

    Kloss A, Motzke T, Grossjohann R, Hess H 1996 Phys. Rev. E 54 5851

    [26]

    Likalter A 1997 Phys. Scr. 55 114

    [27]

    Saleem S, Haun J, Kunze H 2001 Phys. Rev. E 64 56403

    [28]

    Saleem S 2001 Ph. D. Dissertation (Bochum: Ruhr-Universitat)

    [29]

    Desjarlais M 2001 Contrib. Plasma Phys. 41 267

    [30]

    Redmer R, Ropke G, Beule D, Ebeling W 1999 Contrib. Plasma Phys. 39 25

    [31]

    Adams J, Reinholz H, Redmer R, Mintsev V, Shilkin N, Gryaznov V 2007 Phys. Rev. E 76 36405

    [32]

    Redmer R 1997 Phys. Rep. 282 35

    [33]

    Recoules V, Lambert F, Decoster A, Canaud B, Clrouin J 2009 Phys. Rev. Lett. 102 075002

    [34]

    Glenzer S, Redmer R 2009 Rev. Mod. Phys. 81 1625

    [35]

    Kress J, Cohen J, Kilcrease D, Horner D, Collins L 2011 Phys. Rev. E 83 026404

    [36]

    Kress J, Cohen J, Horner D, Lambert F, Collins L 2010 Phys. Rev. E 82 036404

    [37]

    Zaghloul M 2004 Phys. Rev. E 69 026702

    [38]

    Kim D, Kim I 2007 Contrib. Plasma Phys. 47 173

    [39]

    Zaghloul M, Bourham M, Doster J 2000 Phys. Lett. A 266 34

    [40]

    Zaghloul M, Bourham M, Doster J, Powell J 1999 Phys. Lett. A 262 86

    [41]

    Bespalov I M, Polishchuk A Y 1989 Sov. Tech. Phys. Lett. 15 39

    [42]

    Salzmann D, Krumbein A 1978 J. Appl. Phys. 49 3229

    [43]

    Reinholz H, Redmer R, Nagel S 1995 Phys. Rev. E 52 5368

    [44]

    Kietzmann A, Holst B, Redmer R, Desjarlais M, Mattsson T 2007 Phys. Rev. Lett. 98 190602

  • [1] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] Du Yi-Shuai, Kang Wei, Zheng Rui-Lun. Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature. Acta Physica Sinica, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [3] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [4] Chen Yun-Yun, Zheng Gai-Ge, Gu Fang, Li Zhen-Hua. Effect of dust particle potential on plasma conductivity. Acta Physica Sinica, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [5] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [6] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun, Guan Yu-Qin, Lin Lin, Li Ji-Jun. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist-principles. Acta Physica Sinica, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [7] Hou Qing-Yu, Zhao Chun-Wang, Jin Yong-Jun. First-principles study on the effects of the concentration of Al-2N high codoping on the electric conducting performance of ZnO. Acta Physica Sinica, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [8] Yang Shi-E, Wen Li-Wei, Chen Yong-Sheng, Wang Chang-Zhou, Gu Jin-Hua, Gao Xiao-Yong, Lu Jing-Xiao. Substrate temperature and B-doping effects on microstructure and electronic properties of p-type hydrogenated microcrystalline silicon films. Acta Physica Sinica, 2008, 57(8): 5176-5181. doi: 10.7498/aps.57.5176
    [9] He Guo-Rong, Zheng Wan-Hua, Qu Hong-Wei, Yang Guo-Hua, Wang Qing, Cao Yu-Lian, Chen Liang-Hui. Influence of fused interface on the optical and thermal characteristics of vertical cavity lasers. Acta Physica Sinica, 2008, 57(3): 1840-1845. doi: 10.7498/aps.57.1840
    [10] Tan Man-Lin, Zhu Jia-Qi, Zhang Hua-Yu, Zhu Zhen-Ye, Han Jie-Cai. Effect of boron doping on the electrical conduction of tetrahedral amorphous carbon films. Acta Physica Sinica, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [11] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [12] Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Jiang Sheng-Lin, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [13] Jiang Ji-Hao, Wang Gui-Ji, Yang Yu. A new method to measure the electrical conductivity of metals in electric exploding. Acta Physica Sinica, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [14] Wang Jie, Xu You-Long, Chen Xi, Du Xian-Feng, Li Xi-Fei. Properties of electropolymerized high density polypyrrole films. Acta Physica Sinica, 2007, 56(7): 4256-4261. doi: 10.7498/aps.56.4256
    [15] Wang Fei-Peng, Xia Zhong-Fu, Zhang Xiao-Qing, Huang Jin-Feng, Shen Jun. Influence of macroscopic dipoles on the charge storage and charge dynamics of polypropylene ferroelectret films. Acta Physica Sinica, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [16] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [17] Yu Yun-Peng, Lin Xuan-Ying, Lin Shun-Hui, Huang Rui. Influence of light exposure and applied bias on the conductivity of microcrystalline silicon films at room temperature. Acta Physica Sinica, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [18] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [20] Luo Pai-Feng, Tang Xin-Feng, Xiong Cong, Zhang Qing-Jie. Effect of multiwalled carbon nanotubes on the thermoelectric properties of p-type Ba0.3FeCo3Sb12 compounds. Acta Physica Sinica, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
Metrics
  • Abstract views:  5941
  • PDF Downloads:  129
  • Cited By: 0
Publishing process
  • Received Date:  24 August 2015
  • Accepted Date:  06 November 2015
  • Published Online:  05 March 2016

/

返回文章
返回