Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature

Du Yi-Shuai Kang Wei Zheng Rui-Lun

Citation:

Variations of the electrical conductivity and the Fermi velocity of epitaxial graphene with temperature

Du Yi-Shuai, Kang Wei, Zheng Rui-Lun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The atomic anharmonic vibration and the electron-phonon interaction are considered, and then a physical model about the metal-based epitaxial graphene is built. Variations of the electrical conductivity and the Fermi velocity with temperature for the metal-based epitaxial graphene are given based on the solid state physics theory or method. The alkali-metal epitaxial graphene is selected as the substrate, and then the influences of substrate material, electron-phonon interaction and the anharmonic vibration on the electrical conductivity and the Fermi velocity of epitaxial graphene are discussed. Some results are shown as follows. Firstly, at zero temperature, the electrical conductivity and the Fermi velocity of the alkali-metal-base epitaxial graphene increase with the number of the atoms in substrate material increasing. Secondly, the electrical conductivity of epitaxial graphene decreases with temperature rising. Furthermore, the variation rate also decreases with temperature rising. Generally, the electrical conductivity originates mainly from electrons and phones. The electronic contribution to the electrical conductivity varies with temperature slowly, but the phone contribution to electrical conductivity varies with temperature evidently. Therefore, the contribution of phonons to electrical conductivity is much larger than that of electrons. Furthermore, the contribution increases with the number of atoms in basal elements. The phonon contribution to conductivity decreases with temperature rising, but it is unrelated to the basal elements. Thirdly, the Fermi velocity of the epitaxial graphene increases with temperature slowly. The variation of the Fermi velocity with temperature decreases with the increase of interaction between the graphene and the basal atoms. However, it increases with the number of atoms of the basal materials. The anharmonic effect causes important influences on the electrical conductivity and the Fermi velocity. Under the harmonic approximation the velocity is constant. However, the conductance increases rapidly with temperature. With considering the atomic anharmonic terms, the Fermi velocity increases with temperature. The variation of the electrical conductivity with temperature increasing becomes slower. If the temperature is higher, the anharmonic effects become more evident.
      Corresponding author: Zheng Rui-Lun, zhengrui@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11574253), Chongqing Foundation and Advanced Research Projects, China(Grant No. cstc2015jcyjA40054) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars(Grant No. State([2014]1685)).
    [1]

    Davydov S Yu 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [2]

    Tian W, Yuan P F, Yu Z L 2015 Acta Phys. Sin. 64 046102 (in Chinese)[田文, 袁鹏飞, 禹卓良2015物理学报64 046102]

    [3]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2015 Acta Phys. Sin. 64 038102 (in Chinese)[蔚翠, 李佳, 刘庆彬, 蔡树均, 冯值红2015物理学报64 038102]

    [4]

    Tang J, Liu Z L, Kang C Y, Yan W S, Xu P S, Pan H B, Wei S Q, Gao Y Q, Xu X G 2010 Acta Phys.-Chim. Sin. 26 253 (in Chinese)[唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高压强, 徐现刚2010物理化学学报26 253]

    [5]

    Davydov S Yu 2012 Phys. Stat. Sol. 54 821(in Russian)

    [6]

    Wang L, Tian L H, Wei G D, Gao F M, Zheng J J, Yang W Y 2011 J. Inorganic Mater. 26 1009 (in Chinese)[王霖, 田林海, 尉国栋, 高凤梅, 郑金桔, 杨为佑2011无机材料学报26 1009]

    [7]

    Tetlow H, Posthuma de Boer J, Ford I J, Vvedensky D D, Coraux J, Kantorovich L 2014 Phys. Reports 542 195

    [8]

    Grneis A 2013 J. Phys.:Condens. Matter 25 043001

    [9]

    Sutter P, Albrecht P, Albrecht P, Sutter E 2010 Appl. Phys. Lett. 97 213101

    [10]

    Wang R, Hao Y, Wang Z, Gong H, Tho J T 2010 Nano Lett. 10 4844

    [11]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Mogome E, Sumitani K, Mizuta N, Ikeda K, Seigi Mizuno S 2012 Carbon 50 57

    [12]

    Davydov S Yu 2011 Tech. Phys. Lett. 37 64

    [13]

    Alisultanov Z Z 2013 Tech. Phys. Lett. 39 32 (in Russian)

    [14]

    Larciprete R, Ulstrup S, Lacovig P, et al. 2012 Acs Nano 6 9551

    [15]

    Davydov S Yu, Sabinowa G Y 2011 Phys. Stat. Sol. 53 608(in Russian)

    [16]

    Alisultanov Z Z, Kamilov Y K 2014 Phys. Stat. Sol. 56 821(in Russian)

    [17]

    Davydov S Yu 2014 Phys. Stat. Sol. 56 816 (in Russian)

    [18]

    Fang X Y,Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245

    [19]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [20]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese)[程正富, 郑瑞伦2016物理学报65 104701]

    [21]

    Davydov S Yu 2011 Tech. Phys. 37 42(in Russian)

    [22]

    Davydov S Yu 2012 Phys. Solid State 54 875

    [23]

    Huang K, Han R Q 2001 Solid-State Physics(Beijing:China Higher Education Press, CHEP) pp276-282(in Chinese)[黄昆, 韩汝琦2001固体物理学(北京:高等教育出版社)第276–282页]

    [24]

    Zheng R L, Hu X Q, Yang G X 1996 Solid Theory and Application(Chongqing:Southwest Normal University Press) pp267-271(in Chinese)[郑瑞伦, 胡先权, 杨国祥1996固体理论及其应用(重庆:西南师范大学出版社)第267–271页]

    [25]

    Davydov S Yu, Tikhonov S K 1996 Phys. Semicond. Technol. 30 968(in Russian)

    [26]

    Kittel C 1968 Am. J. Phys. 35 547

    [27]

    Yu S, Davydov S Yu 2012 Phys. Semicond. Technol. 46 204(in Russian)

    [28]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [29]

    Ma Q F, Fang R S, Xiang L C, Guo Y 1986 Handbook of Thermo-Physical Properties(Beijing:China Agricultural Machinery Press) pp42-54(in Chinese)[马庆方, 方荣生, 项立成, 郭预1986实用热物理性质手册(北京:中国农业机械出版社)第42–54页]

  • [1]

    Davydov S Yu 2013 Phys. Stat. Sol. 55 813 (in Russian)

    [2]

    Tian W, Yuan P F, Yu Z L 2015 Acta Phys. Sin. 64 046102 (in Chinese)[田文, 袁鹏飞, 禹卓良2015物理学报64 046102]

    [3]

    Wei C, Li J, Liu Q B, Cai S J, Feng Z H 2015 Acta Phys. Sin. 64 038102 (in Chinese)[蔚翠, 李佳, 刘庆彬, 蔡树均, 冯值红2015物理学报64 038102]

    [4]

    Tang J, Liu Z L, Kang C Y, Yan W S, Xu P S, Pan H B, Wei S Q, Gao Y Q, Xu X G 2010 Acta Phys.-Chim. Sin. 26 253 (in Chinese)[唐军, 刘忠良, 康朝阳, 闫文盛, 徐彭寿, 潘海斌, 韦世强, 高压强, 徐现刚2010物理化学学报26 253]

    [5]

    Davydov S Yu 2012 Phys. Stat. Sol. 54 821(in Russian)

    [6]

    Wang L, Tian L H, Wei G D, Gao F M, Zheng J J, Yang W Y 2011 J. Inorganic Mater. 26 1009 (in Chinese)[王霖, 田林海, 尉国栋, 高凤梅, 郑金桔, 杨为佑2011无机材料学报26 1009]

    [7]

    Tetlow H, Posthuma de Boer J, Ford I J, Vvedensky D D, Coraux J, Kantorovich L 2014 Phys. Reports 542 195

    [8]

    Grneis A 2013 J. Phys.:Condens. Matter 25 043001

    [9]

    Sutter P, Albrecht P, Albrecht P, Sutter E 2010 Appl. Phys. Lett. 97 213101

    [10]

    Wang R, Hao Y, Wang Z, Gong H, Tho J T 2010 Nano Lett. 10 4844

    [11]

    Hu B, Ago H, Ito Y, Kawahara K, Tsuji M, Mogome E, Sumitani K, Mizuta N, Ikeda K, Seigi Mizuno S 2012 Carbon 50 57

    [12]

    Davydov S Yu 2011 Tech. Phys. Lett. 37 64

    [13]

    Alisultanov Z Z 2013 Tech. Phys. Lett. 39 32 (in Russian)

    [14]

    Larciprete R, Ulstrup S, Lacovig P, et al. 2012 Acs Nano 6 9551

    [15]

    Davydov S Yu, Sabinowa G Y 2011 Phys. Stat. Sol. 53 608(in Russian)

    [16]

    Alisultanov Z Z, Kamilov Y K 2014 Phys. Stat. Sol. 56 821(in Russian)

    [17]

    Davydov S Yu 2014 Phys. Stat. Sol. 56 816 (in Russian)

    [18]

    Fang X Y,Yu X X, Zheng H M, Jin H B, Wang L, Cao M S 2015 Phys. Lett. A 379 2245

    [19]

    Cheng Z F, Zheng R L 2016 Chin. Phys. Lett. 33 046501

    [20]

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701 (in Chinese)[程正富, 郑瑞伦2016物理学报65 104701]

    [21]

    Davydov S Yu 2011 Tech. Phys. 37 42(in Russian)

    [22]

    Davydov S Yu 2012 Phys. Solid State 54 875

    [23]

    Huang K, Han R Q 2001 Solid-State Physics(Beijing:China Higher Education Press, CHEP) pp276-282(in Chinese)[黄昆, 韩汝琦2001固体物理学(北京:高等教育出版社)第276–282页]

    [24]

    Zheng R L, Hu X Q, Yang G X 1996 Solid Theory and Application(Chongqing:Southwest Normal University Press) pp267-271(in Chinese)[郑瑞伦, 胡先权, 杨国祥1996固体理论及其应用(重庆:西南师范大学出版社)第267–271页]

    [25]

    Davydov S Yu, Tikhonov S K 1996 Phys. Semicond. Technol. 30 968(in Russian)

    [26]

    Kittel C 1968 Am. J. Phys. 35 547

    [27]

    Yu S, Davydov S Yu 2012 Phys. Semicond. Technol. 46 204(in Russian)

    [28]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30

    [29]

    Ma Q F, Fang R S, Xiang L C, Guo Y 1986 Handbook of Thermo-Physical Properties(Beijing:China Agricultural Machinery Press) pp42-54(in Chinese)[马庆方, 方荣生, 项立成, 郭预1986实用热物理性质手册(北京:中国农业机械出版社)第42–54页]

  • [1] Li Gao-Fang, Yin Wen, Huang Jing-Guo, Cui Hao-Yang, Ye Han-Jing, Gao Yan-Qing, Huang Zhi-Ming, Chu Jun-Hao. Conductivity in sulfur doped gallium selenide crystals measured by terahertz time-domain spectroscopy. Acta Physica Sinica, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] Cheng Zheng-Fu, Zheng Rui-Lun. Influence of the anharmonic vibration on the Young modulus and the phonon frequency of the graphene. Acta Physica Sinica, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [3] Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng. A simple and effective simulation for electrical conductivity of warm dense titanium. Acta Physica Sinica, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [4] Yu Cui, Li Jia, Liu Qing-Bin, Cai Shu-Jun, Feng Zhi-Hong. Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001). Acta Physica Sinica, 2014, 63(3): 038102. doi: 10.7498/aps.63.038102
    [5] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [6] Chen Yun-Yun, Zheng Gai-Ge, Gu Fang, Li Zhen-Hua. Effect of dust particle potential on plasma conductivity. Acta Physica Sinica, 2012, 61(15): 154202. doi: 10.7498/aps.61.154202
    [7] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. The influence of anharmonicity on the surface effect in nanodiamond. Acta Physica Sinica, 2012, 61(10): 106501. doi: 10.7498/aps.61.106501
    [8] Pan Jia-Qi, Zhu Chen-Quan, Li Yu-Ren, Lan Wei, Su Qing, Liu Xue-Qin, Xie Er-Qing. Electrical and optical properties of Cu-Al-O thin films sputtered using non-stoichiometric target. Acta Physica Sinica, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [9] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [10] He Guo-Rong, Zheng Wan-Hua, Qu Hong-Wei, Yang Guo-Hua, Wang Qing, Cao Yu-Lian, Chen Liang-Hui. Influence of fused interface on the optical and thermal characteristics of vertical cavity lasers. Acta Physica Sinica, 2008, 57(3): 1840-1845. doi: 10.7498/aps.57.1840
    [11] Yang Feng-Xia, Zhang Duan-Ming, Deng Zong-Wei, Jiang Sheng-Lin, Xu Jie, Li Shu-Dan. The influence of the matrix electrical conductivity on the dc poling behaviors and the loss of 0-3 ferroelectric composites. Acta Physica Sinica, 2008, 57(6): 3840-3845. doi: 10.7498/aps.57.3840
    [12] Jiang Ji-Hao, Wang Gui-Ji, Yang Yu. A new method to measure the electrical conductivity of metals in electric exploding. Acta Physica Sinica, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [13] Tan Man-Lin, Zhu Jia-Qi, Zhang Hua-Yu, Zhu Zhen-Ye, Han Jie-Cai. Effect of boron doping on the electrical conduction of tetrahedral amorphous carbon films. Acta Physica Sinica, 2008, 57(10): 6551-6556. doi: 10.7498/aps.57.6551
    [14] Wang Jie, Xu You-Long, Chen Xi, Du Xian-Feng, Li Xi-Fei. Properties of electropolymerized high density polypyrrole films. Acta Physica Sinica, 2007, 56(7): 4256-4261. doi: 10.7498/aps.56.4256
    [15] Wang Fei-Peng, Xia Zhong-Fu, Zhang Xiao-Qing, Huang Jin-Feng, Shen Jun. Influence of macroscopic dipoles on the charge storage and charge dynamics of polypropylene ferroelectret films. Acta Physica Sinica, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [16] Quan Rong-Hui, Han Jian-Wei, Huang Jian-Guo, Zhang Zhen-Long. Modeling analysis of radiation induced conductivity in electrical insulator. Acta Physica Sinica, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [17] Yu Yun-Peng, Lin Xuan-Ying, Lin Shun-Hui, Huang Rui. Influence of light exposure and applied bias on the conductivity of microcrystalline silicon films at room temperature. Acta Physica Sinica, 2006, 55(4): 2038-2043. doi: 10.7498/aps.55.2038
    [18] Xu Ren-Xin, Chen Wen, Zhou Jing. Effect of polymer conductance on polarization properties of 0-3 piezoelectric composite. Acta Physica Sinica, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
    [19] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [20] Luo Pai-Feng, Tang Xin-Feng, Xiong Cong, Zhang Qing-Jie. Effect of multiwalled carbon nanotubes on the thermoelectric properties of p-type Ba0.3FeCo3Sb12 compounds. Acta Physica Sinica, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
Metrics
  • Abstract views:  7575
  • PDF Downloads:  326
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2016
  • Accepted Date:  16 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回