Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Receptivity of the steady cross-flow vortices in three-dimensional boundary layer

Shen Lu-Yu Lu Chang-Gen

Citation:

Receptivity of the steady cross-flow vortices in three-dimensional boundary layer

Shen Lu-Yu, Lu Chang-Gen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The prediction and control of the laminar-turbulent transition are always one of the most concerned frontiers and hot topics.Receptivity is the initial stage of the laminar-turbulent transition process in the boundary layer,which decides the physical process of the turbulent formation.To date,the researches of receptivity in the three-dimensional boundary layer are much less than those in the two-dimensional boundary layer;while most of the real laminar-turbulent transition in practical engineering occurs in three-dimensional boundary layers.Therefore,receptivity under the threedimensional wall local roughness in a typical three-dimensional boundary layer,i.e.,a 45° back swept infinite flat plate, is numerically studied.And a numerical method for direct numerical simulation (DNS) is constructed in this paper by using fourth order modified Runge-Kutta scheme for temporal march and high-order compact finite difference schemes based on non-uniform mesh for spatial discretization:the convective term is discretized by fifth-order upwind compact finite difference schemes;the pressure term is discretized by sixth-order compact finite difference schemes;the viscous term is discretized by fifth-order compact finite difference schemes;and the pressure equation is solved by third-order finite difference schemes based on non-uniform mesh.As a result,the excited steady cross-flow vortices are observed in the three-dimensional boundary layer.In addition,the relations of three-dimensional boundary-layer receptivity with the length,the width,and the height of three-dimensional wall localized roughness respectively are also ascertained.Then, the influences of the different distributions,the geometrical shapes,and the location to the flat-plate leading-edge of the three-dimensional wall local roughness,and multiple three-dimensional wall local roughness distributed in streamwise and spanwise directions on three-dimensional boundary-layer receptivity are considered.Finally,the effect of the distance between the midpoint of the three-dimensional wall localized roughness and the back-swept angle on three-dimensional boundary-layer receptivity is studied.The intensive research of receptivity in the three-dimensional boundary-layer receptivity will provide the basic theory for awareness and understanding of the laminar-turbulent transition.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11472139), the Startup Foundation for Introducing Talent of NUIST(Grant No. 2016r046), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and Marine Environment Detection of Engineering Technology Research Center of Jiangsu Province, China.
    [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [3]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [4]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予2015物理学报64 224702]

    [5]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予2016物理学报65 194701]

    [6]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 1145(in Chinese)[沈露予, 陆昌根2016应用数学与力学37 1145]

    [7]

    Xu G L, Fu S 2012 Adv. Mech. 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [8]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [9]

    Radeztsky Jr R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [10]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [11]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [12]

    Reibert M S, Saric W S, Carrillo Jr R B, et al. 1996 AIAA P. 0184

    [13]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [14]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [15]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [16]

    Crouch J D 1993 AIAA P. 0074

    [17]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [18]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [19]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [20]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [21]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [22]

    Schrader L U, Brandt L, Mavriplis C, et al. 2010 J. Fluid. Mech. 653 245

    [23]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2012 J. Fluid. Mech. 711 516

    [24]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [25]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [26]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

  • [1]

    Saric W S, Reed H L, White E B 2003 Annu. Rev. Fluid. Mech. 35 413

    [2]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 349

    [3]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 929

    [4]

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702 (in Chinese)[陆昌根, 沈露予2015物理学报64 224702]

    [5]

    Lu C G, Shen L Y 2016 Acta Phys. Sin. 65 194701 (in Chinese)[陆昌根, 沈露予2016物理学报65 194701]

    [6]

    Shen L Y, Lu C G 2016 Appl. Math. Mech. 37 1145(in Chinese)[沈露予, 陆昌根2016应用数学与力学37 1145]

    [7]

    Xu G L, Fu S 2012 Adv. Mech. 42 262 (in Chinese)[徐国亮, 符松2012力学进展42 262]

    [8]

    Bippes H, Nitschke-Kowsky P 1990 AIAA J. 28 1758

    [9]

    Radeztsky Jr R H, Reibert M S, Saric W S 1994 AIAA P. 2373

    [10]

    Radeztsky R H, Reibert M S, Saric W S 1999 AIAA J. 37 1370

    [11]

    Deyhle H, Bippes H 1996 J. Fluid. Mech. 316 73

    [12]

    Reibert M S, Saric W S, Carrillo Jr R B, et al. 1996 AIAA P. 0184

    [13]

    Reibert M S, Saric W S 1997 AIAA P. 1816

    [14]

    Fedorov A V 1988 J. Appl. Mech. Tech. Phys. 29 643

    [15]

    Manuilovich S V 1989 Fluid. Dyn. 24 764

    [16]

    Crouch J D 1993 AIAA P. 0074

    [17]

    Choudhari M 1994 Theor. Comp. Fluid. Dyn. 6 1

    [18]

    Ng L L, Crouch J D 1999 Phys. Fluid. 11 432

    [19]

    Bertolotti F P 2000 Phys. Fluid. 12 1799

    [20]

    Collis S S, Lele S K 1999 J. Fluid. Mech. 380 141

    [21]

    Schrader L U, Brandt L, Henningson D S 2009 J. Fluid. Mech. 618 209

    [22]

    Schrader L U, Brandt L, Mavriplis C, et al. 2010 J. Fluid. Mech. 653 245

    [23]

    Tempelmann D, Schrader L U, Hanifi A, et al. 2012 J. Fluid. Mech. 711 516

    [24]

    Kurz H B E, Kloker M J 2014 J. Fluid. Mech. 755 62

    [25]

    Shen L Y, Lu C G, Wu W G, Xue S F 2015 Add. Appl. Math. Mech. 7 180

    [26]

    Lu C G, Cao W D, Zhang Y M, Guo J T 2008 P. Nat. Sci. 18 873

Metrics
  • Abstract views:  5109
  • PDF Downloads:  223
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2016
  • Accepted Date:  12 October 2016
  • Published Online:  05 January 2017

/

返回文章
返回