Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium

Guan Jia Gu Yi-Sheng Zhu Cheng-Jie Yang Ya-Ping

Citation:

Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium

Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We propose a multifunction phase-shifting manipulator with low noise at a single-photon level,by using a threelevel atomic scheme.This three-level system interacts with a strong pumping field and a weak probe field with a large detuning.Due to this large detuning,two lower states can be coherently prepared prior to the injection of the pump and probe fields.In our configuration,the duration of the pumping field is much longer than that of the probe field. By solving the Heisenberg-Langevin equations of our system under the steady state approximation,we calculate the linear susceptibility of the system and examine the quantum noise properties of the probe field in detail.We show that this scheme,which rests on the process of two-wave mixing with initial atomic coherence,exhibits many interesting properties that neither typical electromagnetically induced transparency (EIT) schemes nor active Raman gain (ARG) schemes possess.Although both EIT-and ARG-based schemes have been widely investigated in atomic medium,the direct generalizations of these schemes to the single/few photon limit prove to be more problematic.The low fidelity due to the significant probe-field attenuation in EIT medium and the large quantum noise due to the amplification of the probe field in an active Raman gain medium are the main obstacles that prohibit a high-fidelity,low-noise phase shifter from being realized in the single/few photon limit.Physically,this scheme can be viewed as a hybrid scheme in which two processes of different physical principles are allowed to interfere with each other to achieve many desired functionalities. For instance,it can be used as a lossless two-photon-broadband phase-shifter with suitable system parameters.It can also be used as an attenuator/amplifier and a total transparency with a zero phase shift.In particular,we show that by locking the pump field intensity and the two-photon detuning simultaneously a flat constant π-phase shift can be realized with unit probe fidelity in a broad probe field frequency range.Applying the quantum regression theorem,we calculate the noise spectrum of the outgoing probe field as a large phase shift is achieved,and show that this two-photon-insensitive π-phase shift may significantly reduce the quantum noise fluctuations associated with a Raman gain process,and have a lot of potential applications for quantum information processing and optical telecommunication.The realization of this broadband π-phase-shift with significantly reduced quantum noise fluctuations makes this scheme attractive for the realization of low-noise phase-gate/polarization-gate at single-photon level.
      Corresponding author: Zhu Cheng-Jie, cjzhu@tongji.edu.cn;yang_yaping@tongji.edu.cn ; Yang Ya-Ping, cjzhu@tongji.edu.cn;yang_yaping@tongji.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2016YFA0302800, 2013CB632701), the National Natural Science Foundation of China (Grant Nos. 11504272, 11474221), and the Shanghai Science and Technology Committee, China (Grant No. 15YF1412400).
    [1]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [2]

    Fleischhauer M, Imamoğlu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [4]

    Hau L V, Harris S E, Dutton Z 1999 Nature 397 594

    [5]

    Petrosyan D, Kurizki G 2002 Phys. Rev. A 65 033833

    [6]

    Zhu C J, Deng L, Hagley E W 2014 Phys. Rev. A 90 063841

    [7]

    Deng L, Payne M G 2007 Phys. Rev. Lett. 98 253902

    [8]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803

    [9]

    Tan C H, Huang G X 2014 Phys. Rev. A 89 033860

    [10]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803

    [11]

    Hang C, Huang G X 2010 Opt. Express 18 2952

    [12]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [13]

    Li R B, Zhu C J, Deng L, Hagley E W 2014 Appl. Phys. Lett. 105 161103

    [14]

    Bell W E, Bloom A L 1961 Appl. Phys. Lett. 6 280

    [15]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [16]

    Alzetta G, Gozzini A, Moi L, Orriols G 1979 Nuovo Cimento B 52 209

    [17]

    Arimondo E, Orriols G 1976 Lett. Nuovo Cimento 17 333

    [18]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [19]

    Arimondo E 1996 Progress in Optics 35 257

    [20]

    Javan A 1957 Phys. Rev. 107 1579

    [21]

    Hänsch T W, Toschek P E 1970 Z. Phys. 236 213

    [22]

    Popova T Y, Popov A K, Rautian S G, Sokolovskii R I 1970 Sov. Phys. JETP 30 466

    [23]

    Kocharovskaya O A, Khanin Y I 1988 JETP Lett. 48 630

    [24]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [25]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936

    [26]

    Lukin M D, Imamoğlu A 2000 Phys. Rev. Lett. 84 1419

    [27]

    Fleishhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [28]

    Deng L, Payne M G, Garrett W R 2004 Opt. Commun. 242 641

    [29]

    Deng L, Payne M G, Hagley E W 2004 Phys. Rev. A 70 063813

    [30]

    Deng L, Payne M G, Garrett W R 2006 Phys. Rep. 429 123

    [31]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [32]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese)[鲁翠萍, 袁春华, 张卫平2008物理学报57 6976]

    [33]

    Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A, Hope J J 2005 Phys. Rev. A 71 033809

    [34]

    Chen Y C, Liao Y A, Chiu H Y, Su J J, Yu I A 2001 Phys. Rev. A 64 053806

    [35]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020

    [36]

    Camparo J C 1998 J. Opt. Soc. Am. B 15 1177

  • [1]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [2]

    Fleischhauer M, Imamoğlu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [4]

    Hau L V, Harris S E, Dutton Z 1999 Nature 397 594

    [5]

    Petrosyan D, Kurizki G 2002 Phys. Rev. A 65 033833

    [6]

    Zhu C J, Deng L, Hagley E W 2014 Phys. Rev. A 90 063841

    [7]

    Deng L, Payne M G 2007 Phys. Rev. Lett. 98 253902

    [8]

    Jiang K J, Deng L, Payne M G 2006 Phys. Rev. A 74 041803

    [9]

    Tan C H, Huang G X 2014 Phys. Rev. A 89 033860

    [10]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803

    [11]

    Hang C, Huang G X 2010 Opt. Express 18 2952

    [12]

    Zhu C J, Deng L, Hagley E W 2013 Phys. Rev. A 88 023854

    [13]

    Li R B, Zhu C J, Deng L, Hagley E W 2014 Appl. Phys. Lett. 105 161103

    [14]

    Bell W E, Bloom A L 1961 Appl. Phys. Lett. 6 280

    [15]

    Alzetta G, Gozzini A, Moi L, Orriols G 1976 Nuovo Cimento B 36 5

    [16]

    Alzetta G, Gozzini A, Moi L, Orriols G 1979 Nuovo Cimento B 52 209

    [17]

    Arimondo E, Orriols G 1976 Lett. Nuovo Cimento 17 333

    [18]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [19]

    Arimondo E 1996 Progress in Optics 35 257

    [20]

    Javan A 1957 Phys. Rev. 107 1579

    [21]

    Hänsch T W, Toschek P E 1970 Z. Phys. 236 213

    [22]

    Popova T Y, Popov A K, Rautian S G, Sokolovskii R I 1970 Sov. Phys. JETP 30 466

    [23]

    Kocharovskaya O A, Khanin Y I 1988 JETP Lett. 48 630

    [24]

    Harris S E 1989 Phys. Rev. Lett. 62 1033

    [25]

    Schmidt H, Imamoğlu A 1996 Opt. Lett. 21 1936

    [26]

    Lukin M D, Imamoğlu A 2000 Phys. Rev. Lett. 84 1419

    [27]

    Fleishhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094

    [28]

    Deng L, Payne M G, Garrett W R 2004 Opt. Commun. 242 641

    [29]

    Deng L, Payne M G, Hagley E W 2004 Phys. Rev. A 70 063813

    [30]

    Deng L, Payne M G, Garrett W R 2006 Phys. Rep. 429 123

    [31]

    Zhang J X, Cai J, Bai Y F, Gao J R, Zhu S Y 2007 Phys. Rev. A 76 033814

    [32]

    Lu C P, Yuan C H, Zhang W P 2008 Acta Phys. Sin. 57 6976 (in Chinese)[鲁翠萍, 袁春华, 张卫平2008物理学报57 6976]

    [33]

    Peng A, Johnsson M, Bowen W P, Lam P K, Bachor H A, Hope J J 2005 Phys. Rev. A 71 033809

    [34]

    Chen Y C, Liao Y A, Chiu H Y, Su J J, Yu I A 2001 Phys. Rev. A 64 053806

    [35]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020

    [36]

    Camparo J C 1998 J. Opt. Soc. Am. B 15 1177

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang. Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures. Acta Physica Sinica, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [3] Fan Hong-Yi, Wu Ze. Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [4] Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210992
    [5] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [6] Wang Ya-Jun, Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Zheng Yao-Hui. Transmission characteristics of optical resonator. Acta Physica Sinica, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [7] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [8] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [9] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [10] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [11] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [12] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [13] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [14] Lu Cui-Ping, Yuan Chun-Hua, Zhang Wei-Ping. The property of quantum noise in active Raman gain medium. Acta Physica Sinica, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [15] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [16] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [19] Wan Lin, Liu Su-Mei, Liu San-Qiu. . Acta Physica Sinica, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [20] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
Metrics
  • Abstract views:  5158
  • PDF Downloads:  234
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2016
  • Accepted Date:  16 August 2016
  • Published Online:  20 January 2017

/

返回文章
返回