Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A cluster-formula composition design approach based on the local short-range order in solid solution structure

Jiang Bei-Bei Wang Qing Dong Chuang

Citation:

A cluster-formula composition design approach based on the local short-range order in solid solution structure

Jiang Bei-Bei, Wang Qing, Dong Chuang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The composition design is of importance for developing high-performance complex alloys and is also the primary step to realize a new mode for material development via theoretical prediction and experimental verification, in comparison with the traditional experience-oriented experiments. Traditional alloy design approaches, including Hume-Rothery rule, electron theories, equivalent method, computer simulation, etc., are first reviewed from the viewpoints of their theoretical basis and applicability to limitations. Almost all the traditional alloys are based on solid solution structures, in which the typical characteristic is the chemical short-range order (CSRO) of the solute distribution. We propose a cluster-plus-glue-atom model for stable solid solutions in light of CSRO. A cluster-formula composition design approach is presented for developing the multi-component high-performance alloys. The cluster-plus-glue-atom model classifies the solid solution structure into two parts, i.e., the cluster part and the glue atom part, where the clusters are centered by solute atoms, showing the strong interactions of clusters with the solvent base and the weak interactions of clusters with solute atoms. The clusters are the nearest-neighbor polyhedrons, being cuboctahedron with a coordination number of 12 (CN12) in FCC structure and rhombic dodecahedron with a CN14 in BCC structure, respectively. Then a uniform cluster-formula of[CN12/14 cluster](glue atom)x is achieved from the cluster model. Its wide applications in different multi-component alloy systems confirm its universality as a simple and accurate tool for multiple-component complex alloy composition design. Such alloy systems include corrosion-resistant Cu alloys, high-performance Ni-base superalloys, high-strength maraging stainless steels, Ti/Zr alloys with low Young's modulus, high-entropy alloys, amorphous metallic glasses, quasicrystals, etc.. The specific alloy design steps are incarnated in the up-Ti alloys with low Young's modulus. Firstly, the necessary alloying elements are chosen according to the service requirements (BCC stability and low Young's modulus). Secondly, the local cluster unit to present CSRO and the corresponding cluster formula of[(Mo, Sn)-(Ti, Zr)14](Nb, Ta)x are built, in which the occupations of the alloying elements in the cluster formula are determined by the enthalpy of mixing H between them with the base Ti. Thirdly, these designed alloys are verified experimentally, and the lowest Young's modulus appears at the up-[(Mo0.5Sn0.5)-(Ti13Zr1)]Nb1. Finally, a new Mo equivalent formula under the guidance of phase diagram features is proposed to characterize the structural stability of Ti alloy. Thus all the Ti alloy compositions with different structural types can be expressed with a uniform cluster formula, in which the structural types of alloys are determined by the Mo equivalent.
      Corresponding author: Wang Qing, wangq@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51131002), the Natural Science Foundation of Liaoning Province of China (Grant No. 2015020202), the International Science Technology Cooperation Program of China (Grant No. 2015DFR60370), the Fundamental Research Funds for the Central Universities (Grant No. DUT16ZD212), and the National Key Research and Development Plan (Grant No. 2016YFB0701200).
    [1]

    Hume-Rothery W, Raynor G V 1940 Proc. R. Soc. London, Ser. A Math. Phys. Sci. 174 471

    [2]

    Bania P J 1994 Jom. 46 16

    [3]

    Bagariatskii I A, Nosova G I 1958 Sov. Phys. Dokl. 3 1014

    [4]

    Morinaga M, Yukawa N, Adachi H 1985 J. Phys. F 15 1071

    [5]

    Ghosh G, Asta M 2005 Acta Mater. 53 3225

    [6]

    Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, Yang K, San Martín D, Kestens L A I, van der Zwaag S 2010 Acta Mater. 58 4067

    [7]

    Malinov S, Sha W 2004 Mater. Sci. Eng. A 365 202

    [8]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D:Appl. Phys. 40 R273

    [9]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [10]

    Pang C, Jiang B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63

    [11]

    Darken L S, Gurry R W 1953 Physical Chemistry of Metals (New York:McGraw-Hill Co) pp258-266

    [12]

    Gschneidner K A 1964 Solid State Phys. 16 275

    [13]

    Chelikowsky J R 1979 Phys. Rev. B 19 686

    [14]

    Alonso J A, Simozar S 1980 Phys. Rev. B 22 5583

    [15]

    Zhang B W, Liao S Z 1996 Z. Phys. B 99 235

    [16]

    Inoue A 2000 Acta Mater. 48 279

    [17]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1

    [18]

    Hume-Rothery W 1966 Acta Metall. 14 17

    [19]

    Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R 2007 Acta Biomater. 3 277

    [20]

    Guo S, Ng C, Lu J, Liu C T 2011 J. Appl. Phys. 109 103505

    [21]

    Hall E O, Algie S H 1966 Metall. Rev. 11 61

    [22]

    Zhang J S, Cui H, Hu Z L, Murata Y, Morinaga M, Yukawa N 1993 Acta Metall. Sin. 29 289 (in Chinese)[张济山, 崔华, 胡壮麟, 村田纯教, 森永正彦, 汤川夏夫1993金属学报29 289]

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477

    [24]

    Chen H, Ding T S, Wang T, Xiao X S, Zhao J L, Jiang L Z 2010 Rare Metal. Mat. Eng. 39 386 (in Chinese)[陈宏, 丁铁锁, 王涛, 肖学山, 赵钧良, 江来珠2010稀有金属材料与工程39 386]

    [25]

    Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara C, Sakuma T 2003 Science 300 464

    [26]

    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T 1998 Mater. Sci. Eng. A 243 244

    [27]

    Yu R H 1978 Chin. Sci. Bull. 13 217 (in Chinese)[余瑞璜1978科学通报13 217]

    [28]

    Liu Z L, Lin C 2006 Prog. Nat. Sci. 16 78

    [29]

    Cai J Y, Peng J Z, Yang X Z, Gray M F 2008 Mater. Lett. 62 3957

    [30]

    Pang X M, Zheng Y, Wang S G, Wang Q H 2009 Int. J. Refract. Met. Hard Mater. 27 777

    [31]

    Okazaki Y, Gotoh E 2005 Biomaterials 26 11

    [32]

    Rosenberg H W, Jaffee R I 1970 The Science, Technology and Application of Titanium (Oxford:Pergamon Press) p851

    [33]

    Schaeffler A L 1949 Met. Prog. 56 680

    [34]

    Morachevskii A G 2001 Russ. J. Appl. Chem. 74 1610

    [35]

    Ferjutz K, Davis J R 1993 ASM Handbook, Volume 6:Welding, Brazing and Soldering (The USA:ASM International) p1009

    [36]

    Morishita K, Sugano R, Wirth B D, Diaz de la Rubia T 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 202 76

    [37]

    Lee N T S, Tan V B C, Lim K M 2006 Appl. Phys. Lett. 88 031913

    [38]

    Holland J H 1992 Sci. Am. 267 66

    [39]

    Ikeda Y 1997 Mater. Trans. JIM 38 771

    [40]

    Zeng W D, Shu Y, Zhou Y G 2004 Rare Metal. Mat. Eng. 33 1041 (in Chinese)[曾卫东, 舒滢, 周义刚2004稀有金属材料与工程33 1041]

    [41]

    Reddy N S, Lee Y H, Park C H, Lee C S 2008 Mater. Sci. Eng. A 492 276

    [42]

    Damask A C 1956 J. Appl. Phys. 27 610

    [43]

    Butt M Z, Ghauri I M 1988 Phys. Stat. Sol. 107 187

    [44]

    Reinhard L, Schönfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [45]

    Cowley J M 1960 Phys. Rev. B 120 1648

    [46]

    Häussler P 1992 Phys. Rep. 222 65

    [47]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [48]

    Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S, Dong C 2010 J. Mater. Res. 25 328

    [49]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [50]

    Zhang X Y, Li X N, Nie L F, Chu J P, Wang Q, Lin C H, Dong C 2011 Appl. Surf. Sci. 257 3636

    [51]

    Li B Z, Gu J J, Wang Q, Ji C J, Wang Y M, Qaing J B, Dong C 2012 Mater. Charact. 68 94

    [52]

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta Metall. Sin. 48 1201 (in Chinese)[王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊2012金属学报48 1201]

    [53]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872

    [54]

    Wang Q, Dong C, Liaw P K 2015 Metall. Mater. Trans. A 46 3440

    [55]

    Murray J L 1992 ASM Handbook, Volume 3:Alloy Phase Diagrams (The USA:ASM International) p1156

    [56]

    Welsch G, Boyer R, Collings E W 1993 Materials Properties Handbook:Titanium Alloys (The USA:ASM International) pp439-921

    [57]

    Che J D, Jiang B B, Wang Q, Dong C, Chen G Q, Zhang R Q, Tang R 2016 Rare Metal. Mat. Eng. (in press) (in Chinese)[车晋达, 姜贝贝, 王清, 董闯, 陈国清, 张瑞谦, 唐睿2016稀有金属材料与工程(已接收)]

    [58]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369

    [59]

    Yamamoto Y, Pint B A, Terrani K A, Field K G, Yang Y, Snead L L 2015 J. Nucl. Mater. 467 703

    [60]

    Kondo R, Nomura N, Tsutsumi Y, Doi H, Hanawa T 2011 Acta Biomater. 7 4278

    [61]

    Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X 2002 J. Chin. Soc. Corros. Rrot. 2 61 (in Chinese)[赵文金, 苗志, 蒋宏曼, 于晓卫, 李卫军, 李聪, 周邦新2002中国腐蚀与防护学报2 61]

    [62]

    Jeong Y H, Lee K O, Kim H G 2002 J. Nucl. Mater. 302 9

    [63]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 3 59

    [64]

    Park J Y, Choi B K, Jeong Y H, Jung Y H 2005 J. Nucl. Mater. 340 237

    [65]

    Jeong Y H, Kim H G, Kim T H 2003 J. Nucl. Mater. 37 1

    [66]

    Smith D L, Chung H M, Loomis B A, Matsui H, Votinov S, Van Witzenburg W 1995 Fusion. Eng. Des. 29 399

    [67]

    Senkov O N, Miller J D, Miracle D B, Woodward C 2015 Nature Comm. 6 7529

    [68]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [69]

    Wang Q, Ma Y, Jiang B B, Li X N, Shi Y, Dong C, Liaw P K 2016 Scripta Mater. 120 85

    [70]

    Zhi T, Yuan T, Tsai C W, Yeh J W, Lundin C D, Liaw P K 2015 Acta Mater. 99 247

    [71]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [72]

    Luo L J, Chen H., Wang Y M, Qiang J B, Wang Q, Dong C, Häussler P 2014 Philos. Mag. 94 2520

    [73]

    Han G, Qiang J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Häussler P 2011 Acta Mater. 59 5917

    [74]

    Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, Haussler P 2016 J. Non-Cryst. Solids. 432 453

    [75]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [76]

    Chen H, Qiang J B, Wang Y M, Dong C 2014 Acta Phys. Pol. A 126 446

  • [1]

    Hume-Rothery W, Raynor G V 1940 Proc. R. Soc. London, Ser. A Math. Phys. Sci. 174 471

    [2]

    Bania P J 1994 Jom. 46 16

    [3]

    Bagariatskii I A, Nosova G I 1958 Sov. Phys. Dokl. 3 1014

    [4]

    Morinaga M, Yukawa N, Adachi H 1985 J. Phys. F 15 1071

    [5]

    Ghosh G, Asta M 2005 Acta Mater. 53 3225

    [6]

    Xu W, Rivera-Díaz-del-Castillo P E J, Yan W, Yang K, San Martín D, Kestens L A I, van der Zwaag S 2010 Acta Mater. 58 4067

    [7]

    Malinov S, Sha W 2004 Mater. Sci. Eng. A 365 202

    [8]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 J. Phys. D:Appl. Phys. 40 R273

    [9]

    Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065

    [10]

    Pang C, Jiang B, Shi Y, Wang Q, Dong C 2015 J. Alloys Compd. 652 63

    [11]

    Darken L S, Gurry R W 1953 Physical Chemistry of Metals (New York:McGraw-Hill Co) pp258-266

    [12]

    Gschneidner K A 1964 Solid State Phys. 16 275

    [13]

    Chelikowsky J R 1979 Phys. Rev. B 19 686

    [14]

    Alonso J A, Simozar S 1980 Phys. Rev. B 22 5583

    [15]

    Zhang B W, Liao S Z 1996 Z. Phys. B 99 235

    [16]

    Inoue A 2000 Acta Mater. 48 279

    [17]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1

    [18]

    Hume-Rothery W 1966 Acta Metall. 14 17

    [19]

    Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R 2007 Acta Biomater. 3 277

    [20]

    Guo S, Ng C, Lu J, Liu C T 2011 J. Appl. Phys. 109 103505

    [21]

    Hall E O, Algie S H 1966 Metall. Rev. 11 61

    [22]

    Zhang J S, Cui H, Hu Z L, Murata Y, Morinaga M, Yukawa N 1993 Acta Metall. Sin. 29 289 (in Chinese)[张济山, 崔华, 胡壮麟, 村田纯教, 森永正彦, 汤川夏夫1993金属学报29 289]

    [23]

    Abdel-Hady M, Hinoshita K, Morinaga M 2006 Scripta Mater. 55 477

    [24]

    Chen H, Ding T S, Wang T, Xiao X S, Zhao J L, Jiang L Z 2010 Rare Metal. Mat. Eng. 39 386 (in Chinese)[陈宏, 丁铁锁, 王涛, 肖学山, 赵钧良, 江来珠2010稀有金属材料与工程39 386]

    [25]

    Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara C, Sakuma T 2003 Science 300 464

    [26]

    Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T 1998 Mater. Sci. Eng. A 243 244

    [27]

    Yu R H 1978 Chin. Sci. Bull. 13 217 (in Chinese)[余瑞璜1978科学通报13 217]

    [28]

    Liu Z L, Lin C 2006 Prog. Nat. Sci. 16 78

    [29]

    Cai J Y, Peng J Z, Yang X Z, Gray M F 2008 Mater. Lett. 62 3957

    [30]

    Pang X M, Zheng Y, Wang S G, Wang Q H 2009 Int. J. Refract. Met. Hard Mater. 27 777

    [31]

    Okazaki Y, Gotoh E 2005 Biomaterials 26 11

    [32]

    Rosenberg H W, Jaffee R I 1970 The Science, Technology and Application of Titanium (Oxford:Pergamon Press) p851

    [33]

    Schaeffler A L 1949 Met. Prog. 56 680

    [34]

    Morachevskii A G 2001 Russ. J. Appl. Chem. 74 1610

    [35]

    Ferjutz K, Davis J R 1993 ASM Handbook, Volume 6:Welding, Brazing and Soldering (The USA:ASM International) p1009

    [36]

    Morishita K, Sugano R, Wirth B D, Diaz de la Rubia T 2003 Nucl. Instrum. Methods Phys. Res. Sect. B 202 76

    [37]

    Lee N T S, Tan V B C, Lim K M 2006 Appl. Phys. Lett. 88 031913

    [38]

    Holland J H 1992 Sci. Am. 267 66

    [39]

    Ikeda Y 1997 Mater. Trans. JIM 38 771

    [40]

    Zeng W D, Shu Y, Zhou Y G 2004 Rare Metal. Mat. Eng. 33 1041 (in Chinese)[曾卫东, 舒滢, 周义刚2004稀有金属材料与工程33 1041]

    [41]

    Reddy N S, Lee Y H, Park C H, Lee C S 2008 Mater. Sci. Eng. A 492 276

    [42]

    Damask A C 1956 J. Appl. Phys. 27 610

    [43]

    Butt M Z, Ghauri I M 1988 Phys. Stat. Sol. 107 187

    [44]

    Reinhard L, Schönfeld B, Kostorz G, Bhrer W 1990 Phys. Rev. B 41 1727

    [45]

    Cowley J M 1960 Phys. Rev. B 120 1648

    [46]

    Häussler P 1992 Phys. Rep. 222 65

    [47]

    Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817

    [48]

    Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S, Dong C 2010 J. Mater. Res. 25 328

    [49]

    Zhang J, Wang Q, Wang Y M, Wen L S, Dong C 2010 J. Alloys Compd. 505 179

    [50]

    Zhang X Y, Li X N, Nie L F, Chu J P, Wang Q, Lin C H, Dong C 2011 Appl. Surf. Sci. 257 3636

    [51]

    Li B Z, Gu J J, Wang Q, Ji C J, Wang Y M, Qaing J B, Dong C 2012 Mater. Charact. 68 94

    [52]

    Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X, Ji C J 2012 Acta Metall. Sin. 48 1201 (in Chinese)[王清, 查钱锋, 刘恩雪, 董闯, 王学军, 谭朝鑫, 冀春俊2012金属学报48 1201]

    [53]

    Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C 2013 Metall. Mater. Trans. A 44 1872

    [54]

    Wang Q, Dong C, Liaw P K 2015 Metall. Mater. Trans. A 46 3440

    [55]

    Murray J L 1992 ASM Handbook, Volume 3:Alloy Phase Diagrams (The USA:ASM International) p1156

    [56]

    Welsch G, Boyer R, Collings E W 1993 Materials Properties Handbook:Titanium Alloys (The USA:ASM International) pp439-921

    [57]

    Che J D, Jiang B B, Wang Q, Dong C, Chen G Q, Zhang R Q, Tang R 2016 Rare Metal. Mat. Eng. (in press) (in Chinese)[车晋达, 姜贝贝, 王清, 董闯, 陈国清, 张瑞谦, 唐睿2016稀有金属材料与工程(已接收)]

    [58]

    Pang C, Wang Q, Zhang R Q, Li Q, Dai X, Dong C, Liaw P K 2015 Mater. Sci. Eng., A 626 369

    [59]

    Yamamoto Y, Pint B A, Terrani K A, Field K G, Yang Y, Snead L L 2015 J. Nucl. Mater. 467 703

    [60]

    Kondo R, Nomura N, Tsutsumi Y, Doi H, Hanawa T 2011 Acta Biomater. 7 4278

    [61]

    Zhao W J, Miao Z, Jiang H M, Yu X W, Li W J, Li C, Zhou B X 2002 J. Chin. Soc. Corros. Rrot. 2 61 (in Chinese)[赵文金, 苗志, 蒋宏曼, 于晓卫, 李卫军, 李聪, 周邦新2002中国腐蚀与防护学报2 61]

    [62]

    Jeong Y H, Lee K O, Kim H G 2002 J. Nucl. Mater. 302 9

    [63]

    Park J Y, Choi B K, Yoo S J, Jeong Y H 2006 J. Nucl. Mater. 3 59

    [64]

    Park J Y, Choi B K, Jeong Y H, Jung Y H 2005 J. Nucl. Mater. 340 237

    [65]

    Jeong Y H, Kim H G, Kim T H 2003 J. Nucl. Mater. 37 1

    [66]

    Smith D L, Chung H M, Loomis B A, Matsui H, Votinov S, Van Witzenburg W 1995 Fusion. Eng. Des. 29 399

    [67]

    Senkov O N, Miller J D, Miracle D B, Woodward C 2015 Nature Comm. 6 7529

    [68]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O 2014 Science 345 1153

    [69]

    Wang Q, Ma Y, Jiang B B, Li X N, Shi Y, Dong C, Liaw P K 2016 Scripta Mater. 120 85

    [70]

    Zhi T, Yuan T, Tsai C W, Yeh J W, Lundin C D, Liaw P K 2015 Acta Mater. 99 247

    [71]

    Klement W, Willens R H, Duwez P O L 1960 Nature 187 869

    [72]

    Luo L J, Chen H., Wang Y M, Qiang J B, Wang Q, Dong C, Häussler P 2014 Philos. Mag. 94 2520

    [73]

    Han G, Qiang J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Häussler P 2011 Acta Mater. 59 5917

    [74]

    Geng Y X, Wang Y M, Qiang J B, Zhang G F, Dong C, Haussler P 2016 J. Non-Cryst. Solids. 432 453

    [75]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [76]

    Chen H, Qiang J B, Wang Y M, Dong C 2014 Acta Phys. Pol. A 126 446

  • [1] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang. First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [2] Zhang Shuo-Xin, Liu Shi-Yu, Yan Da-Li, Yu Qian, Ren Hai-Tao, Yu Bin, Li De-Jun. First-principles study of structural stability and mechanical properties of Ta1–xHfxC and Ta1–xZrxC solid solutions. Acta Physica Sinica, 2021, 70(11): 117102. doi: 10.7498/aps.70.20210191
    [3] Wang Mo-Fan, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Polycomponent doping improved thermoelectric performance of Cu3SbSe4-based solid solutions. Acta Physica Sinica, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [4] Li Dong-Mei, Han Jing-Yu, Dong Chuang. Phase-composition design of high-hardness and high-electric-conductivity Cu-Ni-Si Alloy. Acta Physica Sinica, 2019, 68(19): 196102. doi: 10.7498/aps.68.20190593
    [5] Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang. Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model. Acta Physica Sinica, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [6] Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang. Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys. Acta Physica Sinica, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [7] Wei Hong-Qing, Long Zhi-Lin, Xu Fu, Zhang Ping, Tang Yi. Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation. Acta Physica Sinica, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [8] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [9] Qin Jie-Ming, Tian Li-Fei, Jiang Da-Yong, Gao Shang, Zhao Jian-Xun, Liang Jian-Cheng. Characterization of the p-type ZnO solid solution by doping Li under high pressure. Acta Physica Sinica, 2012, 61(7): 070702. doi: 10.7498/aps.61.070702
    [10] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [11] Zhang Ji-Ye, Luo Jun, Liang Jing-Kui, Ji Li-Na, Liu Yan-Hui, Li Jing-Bo, Rao Guang-Hui. Structure and magnetic properties of the pseudobinary solid solution TbGa1-xGex(0≤x≤0.4). Acta Physica Sinica, 2008, 57(10): 6482-6487. doi: 10.7498/aps.57.6482
    [12] Yan Wen-Sheng, Yin Shi-Long, Fan Jiang-Wei, Li Yu-Zhi, Liu Wen-Han, Hao Lu-Yuan, Pan Zhi-Yun, Wei Shi-Qiang. Structural transition of Fe80Cu20 alloy induced by annealing. Acta Physica Sinica, 2005, 54(12): 5707-5712. doi: 10.7498/aps.54.5707
    [13] NI JUN, WANG SHI-FAN. DETERMINATION OF ORDERED STRUCTURES IN FACE-CENTRED CUBE INTERSTITIAL SOLUTIONS. Acta Physica Sinica, 1993, 42(2): 290-296. doi: 10.7498/aps.42.290
    [14] CHEN XI-SEN, WANG ZU-LUN, GUAN WEI-YAN. THE SUPERCONDUCTING-NORMAL TRANSITIONS OF FAST QUENCHED SUPERSATURATED SOLID SOLUTION Al-lat% Ge ALLOY. Acta Physica Sinica, 1983, 32(2): 256-258. doi: 10.7498/aps.32.256
    [15] TANG DI-SHENG, CHE GUANG-CAN, TIAN JING-HUA. INVESTIGATION OF THE SOLID SOLUTIONS IN ALKALI- METAL IODATE PSEUDO-BINARY SYSTEMS. Acta Physica Sinica, 1980, 29(8): 1068-1074. doi: 10.7498/aps.29.1068
    [16] LIANG JING-KUI, ZHANG YU-LING, LIU HONG-BIN. A NEW TYPE OF CONTINUOUS SOLID SOLUTIONS ——THE VARIATION OF CRYSTAL STRUCTURE TYPES OF Mgx/2Li1-xIO3 WITH COMPOSITION. Acta Physica Sinica, 1980, 29(8): 1023-1032. doi: 10.7498/aps.29.1023
    [17] . Acta Physica Sinica, 1965, 21(6): 1316-1320. doi: 10.7498/aps.21.1316
    [18] CHANG TSUNQ-SUI. THE CONFIGURATIONAL PARTITION FUNCTIONS OF SOLID SOLUTIONS. Acta Physica Sinica, 1959, 15(1): 42-54. doi: 10.7498/aps.15.42
    [19] CHANG TSUNG-SUI. REGULAR SOLUTIONS WITH MOLECULES OCCUPYING SEVERAL SITES. Acta Physica Sinica, 1959, 15(12): 652-663. doi: 10.7498/aps.15.652
    [20] WANG TEH-MOU, HSU HOU-GHANG, CHANG TSUNG-SUI. CONFIGURATIONAL PARTITION FUNCTION OF BINARY SOLID SOLUTIONS. Acta Physica Sinica, 1957, 13(6): 525-542. doi: 10.7498/aps.13.525
Metrics
  • Abstract views:  5790
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2016
  • Accepted Date:  25 October 2016
  • Published Online:  20 January 2017

/

返回文章
返回