Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design of varying f/number of cooled infrared detectors based on spherical reflecting warm shield

Chang Song-Tao Tian Qi-Jie He Feng-Yun Yu Yi Li Zhou

Citation:

Design of varying f/number of cooled infrared detectors based on spherical reflecting warm shield

Chang Song-Tao, Tian Qi-Jie, He Feng-Yun, Yu Yi, Li Zhou
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As is well known, the f/number of a cooled infrared detector is determined by the aperture and position of the internal cold shield. Moreover, the f/number can be changed by inserting a warm shield in front of the detector. In order to reduce the stray radiation introduced by an ordinary planar warm shield, we propose a method of varying f/number of the infrared detector based on a well-designed spherical reflecting warm shield in this paper. First, an infrared radiation model is established in order to analyze the influence of the stray radiation introduced by the ordinary planar warm shield. Then the design principle of the spherical reflecting warm shield is put forward. By changing the surface shape and emission characteristics, the stray radiation introduced by the ordinary planar warm shield can be obviously reduced. Hence it is beneficial to maintain the performance of the detector effectively while the f/number is changed. To validate the proposed method, a spherical reflecting warm shield and an ordinary planar warm shield are designed to vary the f/number of a cooled infrared detector respectively. To compare the influences of the two warm shields on the cooled infrared detector, radiometric calibration experiments are conducted in a high-low-temperature test chamber. The analyses and experimental results show that the stray radiation of spherical reflecting warm shield is far less than that of the ordinary planar warm shield. Moreover, the noise equivalent temperature difference introduced by the designed spherical reflecting warm shield is lower. Therefore it is indeed better than an ordinary planar warm shield in ensuring the performance of an infrared imaging system.
      Corresponding author: Chang Song-Tao, stchang2010@sina.com
    [1]

    Vizgaitis J N 2005 Proc. SPIE 5783 875

    [2]

    Feng C, Chang J, Yang H B 2015 Acta Phys. Sin. 64 034201 (in Chinese) [冯驰, 常军, 杨海波 2015 物理学报 64 034201]

    [3]

    Qian N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese) [权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703]

    [4]

    Gat N, Zhang J Y, Li M D, Chen L, Hector G 2007 Proc. SPIE 6542 65420Y

    [5]

    Yanevich J P, Geiffin E J, Brest M L, Mcallister K L 2014 US Patent 8 911 163

    [6]

    Griffin E J, Hershberg J 2014 US Patent 9 488 254

    [7]

    King D F, Graham J S, Kennedy A M, Radford W A, Wootan J J 2008 Proc. SPIE 6940 69402R

    [8]

    Vizgaitis J 2008 Proc. SPIE 6940 69400S

    [9]

    Gat N, Garman J D 2007 US Patent 157 706

    [10]

    Pravdivtsev A V, Akram M N 2013 Infrared Phys. Technol. 60 306

    [11]

    Liu Y, An X Q, Wang Q 2013 Appl. Opt. 52 B1

    [12]

    Xia X L, Shuai Y, Tan H P 2005 J. Quant. Spectrosc. Radiat. Transfer 95 101

    [13]

    Howard J W, Abel I R 1982 Appl. Opt. 21 3393

    [14]

    Akram M N 2010 Appl. Opt. 49 964

    [15]

    Siegel R, Howell J R 1972 Thermal Radiation Heat Transfer(Washington: Hemisphere)

    [16]

    Fest E C 2013 Stray Light Analysis and Control (Bellingham: SPIE Press)

    [17]

    Chang S T, Sun Z Y, Zhang Y Y, Zhu W 2015 Acta Phys. Sin. 64 050702 (in Chinese) [常松涛, 孙志远, 张尧禹, 朱玮 2015 物理学报 64 050702]

  • [1]

    Vizgaitis J N 2005 Proc. SPIE 5783 875

    [2]

    Feng C, Chang J, Yang H B 2015 Acta Phys. Sin. 64 034201 (in Chinese) [冯驰, 常军, 杨海波 2015 物理学报 64 034201]

    [3]

    Qian N C, Zhang C M, Mu T K 2016 Acta Phys. Sin. 65 080703 (in Chinese) [权乃承, 张淳民, 穆廷魁 2016 物理学报 65 080703]

    [4]

    Gat N, Zhang J Y, Li M D, Chen L, Hector G 2007 Proc. SPIE 6542 65420Y

    [5]

    Yanevich J P, Geiffin E J, Brest M L, Mcallister K L 2014 US Patent 8 911 163

    [6]

    Griffin E J, Hershberg J 2014 US Patent 9 488 254

    [7]

    King D F, Graham J S, Kennedy A M, Radford W A, Wootan J J 2008 Proc. SPIE 6940 69402R

    [8]

    Vizgaitis J 2008 Proc. SPIE 6940 69400S

    [9]

    Gat N, Garman J D 2007 US Patent 157 706

    [10]

    Pravdivtsev A V, Akram M N 2013 Infrared Phys. Technol. 60 306

    [11]

    Liu Y, An X Q, Wang Q 2013 Appl. Opt. 52 B1

    [12]

    Xia X L, Shuai Y, Tan H P 2005 J. Quant. Spectrosc. Radiat. Transfer 95 101

    [13]

    Howard J W, Abel I R 1982 Appl. Opt. 21 3393

    [14]

    Akram M N 2010 Appl. Opt. 49 964

    [15]

    Siegel R, Howell J R 1972 Thermal Radiation Heat Transfer(Washington: Hemisphere)

    [16]

    Fest E C 2013 Stray Light Analysis and Control (Bellingham: SPIE Press)

    [17]

    Chang S T, Sun Z Y, Zhang Y Y, Zhu W 2015 Acta Phys. Sin. 64 050702 (in Chinese) [常松涛, 孙志远, 张尧禹, 朱玮 2015 物理学报 64 050702]

Metrics
  • Abstract views:  4768
  • PDF Downloads:  146
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2017
  • Accepted Date:  10 April 2017
  • Published Online:  05 August 2017

/

返回文章
返回