Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode

Shi Qiang Li Lu-Ping Zhang Yong-Hui Zhang Zi-Hui Bi Wen-Gang

Citation:

Identifying the influence of GaN/InxGa1-xN type last quantum barrier on internal quantum efficiency for III-nitride based light-emitting diode

Shi Qiang, Li Lu-Ping, Zhang Yong-Hui, Zhang Zi-Hui, Bi Wen-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • GaN/InxGa1-xN-type last quantum barrier (LQB) proves to be useful for Ⅲ-nitride based light-emitting diode (LED) in enhancing the internal quantum efficiency (IQE) and suppressing the efficiency droop level that often takes place especially when the injection current is high. In this work, GaN/InxGa1-xN-type LQB reported by the scientific community to enhance the IQE is first reviewed and summarized. Then, the influences of indium composition and thickness of the InxGa1-xN layer on the performance of LED incorporated with the GaN/InxGa1-xN-type LQB are studied. Through analyzing energy band diagrams calculated with APSYS, we find that the[0001] oriented LQB features an electron depletion due to the polarization induced negative charges at the GaN/InxGa1-xN interface. The electron depletion enhances the electron blocking effect and reduces the electron accumulation at the InxGa1-xN/AlGaN interface, leading to an improved IQE for the LED. In addition, increasing the indium composition of the InxGa1-xN layer will generate more negative interface charges, which result in further increased conduction band barrier height for the electrons and reduced electron leakage. On the other hand, for the GaN/InxGa1-xN-type LQB with a fixed indium composition, there exists an optimum thickness for the InxGa1-xN layer in maximizing the improvement of IQE for the LED, mainly because the interaction between two mechanisms co-exists when varying the thickness of the InxGa1-xN layer, i.e., the initial increase in the InxGa1-xN layer thickness will lead to an increased conduction band barrier height, which prevents electrons from leaking into the InxGa1-xN layer. However, further increasing the InxGa1-xN layer thickness to a certain value, tunneling effect will kick in as a result of the simultaneously reduced GaN thickness-the electrons will tunnel through the thin GaN layer in the LQB from the quantum wells to the InxGa1-xN layer. This will cause electrons to increase in the InxGa1-xN layer. Therefore, as a result of the interaction between the above-mentioned two mechanisms, there is an optimum thickness for the InxGa1-xN layer such that the electrons in the InxGa1-xN layer will reach a minimal value, which in turn will lead to a maximized conduction band barrier height for the AlGaN electron blocking layer and facilitate the performance of LEDs.
      Corresponding author: Zhang Yong-Hui, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn ; Bi Wen-Gang, zhangyh@hebut.edu.cn;wbi@hebut.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant Nos.2016YFB0400800,2016YFB0400801),the National Natural Science Foundation of China (Grant Nos.61604051,51502074),the Natural Science Foundation of Tianjin City,China (Grant Nos.16JCQNJC01000,16JCYBJC16200),and the Technology Foundation for Selected Overseas Chinese Scholar by Ministry of Human Resources and Social Security of the People's Republic of China (Grant No.CG2016008001).
    [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • [1]

    Chen W C, Tang H L, Luo P, Ma W W, Xu X D, Qian X B, Jiang D P, Wu F, Wang J Y, Xu J 2014 Acta Phys. Sin. 63 068103 (in Chinese) [陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军 2014 物理学报 63 068103]

    [2]

    Tan S T, Sun X W, Demir H V, Denbaars S P 2012 IEEE Photon. J. 4 613

    [3]

    Tansu N, Zhao H, Liu G, Li X H, Zhang J, Tong H, Ee Y K 2010 IEEE Photon. J. 2 241

    [4]

    Pimputkar S, Speck J S, Denbaars S P, Nakamura S 2009 Nat. Photon. 3 180

    [5]

    Khan A, Balakrishnan K, Katona T 2008 Nat. Photon. 2 77

    [6]

    Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G, Zanoni E 2013 J. Appl. Phys. 114 071101

    [7]

    Iveland J, Martinelli L, Peretti J, Speck J S, Weisbuch C 2013 Phys. Rev. Lett. 110 177406

    [8]

    Zhang Z H, Ju Z, Liu W, Tan S T, Ji Y, Kyaw Z, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Opt. Lett. 39 2483

    [9]

    Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J, Park Y 2007 Appl. Phys. Lett. 91 183507

    [10]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 033506

    [11]

    Zhang Z H, Zhang Y, Bi W, Geng C, Xu S, Demir H V, Sun X W 2016 Appl. Phys. Lett. 108 133502

    [12]

    Zhang Z H, Liu W, Tan S T, Ji Y, Wang L, Zhu B, Zhang Y, Lu S, Zhang X, Hasanov N, Sun X W, Demir H V 2014 Appl. Phys. Lett. 105 153503

    [13]

    Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C, Park S J 2009 Appl. Phys. Lett. 94 231123

    [14]

    Meyaard D S, Lin G B, Ma M, Cho J, Schubert E F, Han S H, Kim M H, Shim H, Kim Y S 2013 Appl. Phys. Lett. 103 201112

    [15]

    Cheng L, Wu S, Xia C, Chen H 2015 J. Appl. Phys. 118 103103

    [16]

    Kuo Y K, Shih Y H, Tsai M C, Chang J Y 2011 IEEE Photon. Tech. L. 23 1630

    [17]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [18]

    Lu T, Ma Z, Du C, Fang Y, Chen F, Jiang Y, Wang L, Jia H, Chen H 2014 Appl. Phys. A 114 1055

    [19]

    Lin R M, Yu S F, Chang S J, Chiang T H, Chang S P, Chen C H 2012 Appl. Phys. Lett. 101 081120

    [20]

    Liu Z, Ma J, Yi X, Guo E, Wang L, Wang J, Lu N, Li J, Ferguson I, Melton A 2012 Appl. Phys. Lett. 101 261106

    [21]

    Kyaw Z, Zhang Z H, Liu W, Tan S T, Ju Z G, Zhang X L, Ji Y, Hasanov N, Zhu B, Lu S, Zhang Y, Teng J H, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 161113

    [22]

    Zhang Z H, Zhang Y, Li H, Xu S, Geng C, Bi W 2016 IEEE Photon. J. 8 8200307

    [23]

    Kirste L, Khler K, Maier M, Kunzer M, Maier M, Wagner J 2008 J. Mater. Sci.-Mater. Electron. 19 S176

    [24]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Kyaw Z, Zhang X, Wang L, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 243501

    [25]

    Lin G B, Meyaard D, Cho J, Schubert E F, Shim H, Sone C 2012 Appl. Phys. Lett. 100 161106

    [26]

    Zhang Z H, Liu W, Ju Z, Tan S T, Ji Y, Zhang X, Wang L, Kyaw Z, Sun X W, Demir H V 2014 Appl. Phys. Lett. 104 251108

    [27]

    Zhang Z H, Tan S T, Kyaw Z, Ji Y, Liu W, Ju Z, Hasanov N, Sun X W, Demir H V 2013 Appl. Phys. Lett. 102 193508

    [28]

    Zhang L, Ding K, Liu N X, Wei T B, Ji X L, Ma P, Yan J C, Wang J X, Zeng Y P, Li J M 2011 Appl. Phys. Lett. 98 101110

    [29]

    Laubsch A, Sabathil M, Bergbauer W, Strassburg M, Lugauer H, Peter M, Lutgen S, Linder N, Streubel K, Hader J, Moloney J V, Pasenow B, Koch S W 2009 Phys. Status Solidi C 6 S913

    [30]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

  • [1] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [2] Wang Dang-Hui, Xu Tian-Han, Wang Rong, Luo She-Ji, Yao Ting-Zhen. Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [3] Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi. Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer. Acta Physica Sinica, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [4] Wang Xue-Song, Ji Zi-Wu, Wang Hui-Ning, Xu Ming-Sheng, Xu Xian-Gang, Lü Yuan-Jie, Feng Zhi-Hong. Internal quantum efficiency of InGaN/GaN multiple quantum well. Acta Physica Sinica, 2014, 63(12): 127801. doi: 10.7498/aps.63.127801
    [5] Liu Zhan-Hui, Zhang Li-Li, Li Qing-Fang, Zhang Rong, Xiu Xiang-Qian, Xie Zi-Li, Shan Yun. InGaN/GaN blue light emitting diodes grown on Si(110) and Si(111) substrates. Acta Physica Sinica, 2014, 63(20): 207304. doi: 10.7498/aps.63.207304
    [6] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [7] Yue Qing-Yang, Kong Fan-Min, Li Kang, Zhao Jia. Study on the light extraction efficiency of GaN-based light emitting diode by using the defects of the photonic crystals. Acta Physica Sinica, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [8] Chen Jun, Fan Guang-Han, Zhang Yun-Yan. The investigation of performance improvement of GaN-based dual-wavelength light-emitting diodes with various thickness of quantum barriers. Acta Physica Sinica, 2012, 61(17): 178504. doi: 10.7498/aps.61.178504
    [9] Li Shui-Qing, Wang Lai, Han Yan-Jun, Luo Yi, Deng He-Qing, Qiu Jian-Sheng, Zhang Jie. A new growth method of roughed p-GaN in GaN-based light emitting diodes. Acta Physica Sinica, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [10] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [11] Zhu Li-Hong, Cai Jia-Fa, Li Xiao-Ying, Deng Biao, Liu Bao-Lin. Luminous performance improvement of InGaN/GaN light-emitting diodes by modulating In content in well layers. Acta Physica Sinica, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [12] Li Wei-Jun, Zhang Bo, Xu Wen-Lan, Lu Wei. Experimental and theoretical study of blue InGaN/GaN multiple quantum well blue light-emitting diodes. Acta Physica Sinica, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [13] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [14] Li Bing-Qian, Liu Yu-Hua, Feng Yu-Chun. The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [15] Xiong Chuan-Bing, Jiang Feng-Yi, Wang Li, Fang Wen-Qing, Mo Chun-Lan. The investigation on the interference phenomenon in electroluminescence spectrum of vertical structured InGaAlN multiple quantum well light-emitting diodes. Acta Physica Sinica, 2008, 57(12): 7860-7864. doi: 10.7498/aps.57.7860
    [16] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [17] Ding Zhi-Bo, Wang Qi, Wang Kun, Wang Huan, Chen Tian-Xiang, Zhang Guo-Yi, Yao Shu-De. Determination of chemical composition and average crystal lattice constants of InGaN/GaN multiple quantum wells. Acta Physica Sinica, 2007, 56(5): 2873-2877. doi: 10.7498/aps.56.2873
    [18] Enhanced luminescence of InGaN/GaN multiple quantum wells with indium doped GaN barriers. Acta Physica Sinica, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [19] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
Metrics
  • Abstract views:  5040
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  04 April 2017
  • Accepted Date:  23 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回