Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film

Tan Man-Lin Zhou Dan-Dan Fu Dong-Ju Zhang Wei-Li Ma Qing Li Dong-Shuang Chen Jian-Jun Zhang Hua-Yu Wang Gen-Ping

Citation:

Performance investigation of black silicon solar cells with surface passivated by BiFeO3/ITO composite film

Tan Man-Lin, Zhou Dan-Dan, Fu Dong-Ju, Zhang Wei-Li, Ma Qing, Li Dong-Shuang, Chen Jian-Jun, Zhang Hua-Yu, Wang Gen-Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In order to prepare black silicon material with excellent optical absorption performance for solar cell application, a micro/nano bilayer-structure is formed on the surface of textured silicon wafer by a silver assisted chemical etching method. It is found that the deeper nanoholes could form as the etching time is longer, and the surface reflectivity is reduced obviously due to the increased time of photon reflection from the nanowires. The incident light reflectivity of the prepared black silicon is significantly reduced to 2.3%, showing obviously better optical reflectance characteristics than general monocrystalline silicon wafer, especially in a wavelength range of 300-830 nm. Considering the fact that a large number of carrier recombination centers is introduced into the nanostructured crystal silicon surface, BiFeO3/ITO composite film is coated on the surface of the black silicon solar cell by magnetron sputtering process to optimize the surface defect states and improve the cell performance. The experimental results show that the lengths of the nanowires are predominantly in a range of 180-320 nm for the prepared black silicon with micro/nano double-layer structure. The reflectivity of the incident light is below 5% in a wavelength range from 300 nm to 1000 nm, and reaches a maximal value at about 700 nm. The reflectance increases slightly as BiFeO3/ITO composite film is coated on the surface of black silicon solar cell, but it is still much lower than that of general monocrystalline silicon solar cell. The open circuit voltage and short circuit current density of the black silicon solar cell increase respectively from 0.61 V to 0.68 V and from 28.42 mA/cm2 to 34.57 mA/cm2 after it has been coated with BiFeO3/ITO composite film, and the photoelectric conversion efficiency of the cell increases from 13.3% to 16.8% accordingly. The improvement in performance of black silicon solar cell is mainly due to the promotion of effective separation of photogenerated carriers, thereby enhancing the spectral response of black silicon solar cell in the whole wavelength range. This indicates that the spontaneously polarized BiFeO3 film can play a better role in improving the surface properties of black silicon solar cell. On the other hand, for the BiFeO3 film deposited on the surface of black silicon, a spontaneous polarization positive electric field could be produced, pointing from the film surface to the inside of the solar cell. This polarization electric field could also act as part of built-in electric field to contribute the photoelectric transformation of the black silicon solar cell, leading to the open circuit voltage of cell increasing from 0.61 V to 0.68 V.
      Corresponding author: Tan Man-Lin, tanml@tsinghua-sz.org
    • Funds: Project supported by the Science, Technology and Innovation Commission of Shenzhen Municipality, China (Grant Nos. CXZZ2015032316092455, JCYJ20160301100700645, JCYJ20140419122040621, JCYJ20160429112213821), and the Science & Technology Department of Guangdong Province, China (Grant No. 2016B020244001).
    [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Ho-Baillie A W Y 2017 Prog. Photovolt:Res. Appl. 25 3

    [2]

    Zeng X A, Ai B, Deng Y J, Shen H 2014 Acta Phys. Sin. 63 028803(in Chinese)[曾湘安, 艾斌, 邓幼俊, 沈辉2014物理学报63 028803]

    [3]

    Tsing H H, Richard J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [4]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese)[刘光友, 谭兴文, 姚金才, 王振, 熊祖洪2008物理学报57 514]

    [5]

    Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garín M, Alcubilla R 2015 Nature Nanotech. 10 624

    [6]

    Hsu C H, Wu J R, Lu Y T, Flood D J, Barron A R, Chen L C 2014 Mater. Sci. Semicond. Process. 25 2

    [7]
    [8]

    Oh J, Yuan H C, Branz H M 2012 Nature Nanotech. 7 743

    [9]

    Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke A N, Wehrspohn R B 2014 Opt. Express 22 A1469

    [10]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107

    [11]

    Liu Y P, Lai T, Li H L, Wang Y, Mei Z X, Liang H L, Li Z L, Zhang F M, Wang W J, Kuznetsov A Y, Du X L 2012 Small 8 1392

    [12]

    Lin X X, Hua X, Huang Z G, Shen W Z 2013 Nanotechnology 24 235402

    [13]

    Zhao Z C 2015 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[赵增超2015博士学位论文(大连:大连理工大学)]

    [14]

    Brendel R, Aberle A, Cuevas A, Glunz S, Hahn G, Poortmans J, Sinton R, Weeber A 2013 Energy Procedia 38 866

    [15]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807(in Chinese)[杨彪, 刘向鑫, 李辉2015物理学报64 038807]

    [16]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507

    [17]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [18]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905

    [19]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager Ⅲ J W, Ramesh R 2009 Appl. Phys. Lett. 95 06290923

    [20]

    Katiyar R K, Sharma Y, Misra P, Puli V S, Sahoo S, Kumar A, Scott J F, Morell G, Weiner B R, Katiyar R S 2014 Appl. Phys. Lett. 105 172904

    [21]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177651(in Chinese)[宋桂林周晓辉, 苏健, 杨海刚, 王天兴, 常方高2012物理学报61 177651]

    [22]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [23]

    Yang M M, Bhatnagar A, Luo Z D, Alexe M 2017 Sci. Rep. 7 43070

    [24]

    Das R R, Kim D M, Baek S H, Zavaliche F, Yang S Y, Ke X, Streiffer S K, Rzchowski M S, Ramesh R, Pan X Q, Eom C B 2006 Appl. Phys. Lett. 88 242904

    [25]

    Limin K, Wei Z, Yi S, Ouyang J 2014 Phys. Stat. Sol. a 211 565

    [26]

    Sharma S, Singh V, Kotnala R K, Dwivedi R K 2014 J . Mater. Sci. 25 1915

    [27]

    Wang Y, Jiang Q H, He H C, Nan C W 2006 Appl. Phys. Lett. 88 142503

    [28]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 233

  • [1]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D, Levi D H, Ho-Baillie A W Y 2017 Prog. Photovolt:Res. Appl. 25 3

    [2]

    Zeng X A, Ai B, Deng Y J, Shen H 2014 Acta Phys. Sin. 63 028803(in Chinese)[曾湘安, 艾斌, 邓幼俊, 沈辉2014物理学报63 028803]

    [3]

    Tsing H H, Richard J, Wu C, Deliwala S, Mazur E 1998 Appl. Phys. Lett. 73 1673

    [4]

    Liu G Y, Tan X W, Yao J C, Wang Z, Xiong Z H 2008 Acta Phys. Sin. 57 514 (in Chinese)[刘光友, 谭兴文, 姚金才, 王振, 熊祖洪2008物理学报57 514]

    [5]

    Savin H, Repo P, von Gastrow G, Ortega P, Calle E, Garín M, Alcubilla R 2015 Nature Nanotech. 10 624

    [6]

    Hsu C H, Wu J R, Lu Y T, Flood D J, Barron A R, Chen L C 2014 Mater. Sci. Semicond. Process. 25 2

    [7]
    [8]

    Oh J, Yuan H C, Branz H M 2012 Nature Nanotech. 7 743

    [9]

    Ziegler J, Haschke J, Käsebier T, Korte L, Sprafke A N, Wehrspohn R B 2014 Opt. Express 22 A1469

    [10]

    Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107

    [11]

    Liu Y P, Lai T, Li H L, Wang Y, Mei Z X, Liang H L, Li Z L, Zhang F M, Wang W J, Kuznetsov A Y, Du X L 2012 Small 8 1392

    [12]

    Lin X X, Hua X, Huang Z G, Shen W Z 2013 Nanotechnology 24 235402

    [13]

    Zhao Z C 2015 Ph. D. Dissertation (Dalian:Dalian University of Technology) (in Chinese)[赵增超2015博士学位论文(大连:大连理工大学)]

    [14]

    Brendel R, Aberle A, Cuevas A, Glunz S, Hahn G, Poortmans J, Sinton R, Weeber A 2013 Energy Procedia 38 866

    [15]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807(in Chinese)[杨彪, 刘向鑫, 李辉2015物理学报64 038807]

    [16]

    Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507

    [17]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [18]

    Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905

    [19]

    Yang S Y, Martin L W, Byrnes S J, Conry T E, Basu S R, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu Y H, Yang C H, Musfeldt J L, Schlom D G, Ager Ⅲ J W, Ramesh R 2009 Appl. Phys. Lett. 95 06290923

    [20]

    Katiyar R K, Sharma Y, Misra P, Puli V S, Sahoo S, Kumar A, Scott J F, Morell G, Weiner B R, Katiyar R S 2014 Appl. Phys. Lett. 105 172904

    [21]

    Song G L, Zhou X H, Su J, Yang H G, Wang T X, Chang F G 2012 Acta Phys. Sin. 61 177651(in Chinese)[宋桂林周晓辉, 苏健, 杨海刚, 王天兴, 常方高2012物理学报61 177651]

    [22]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763

    [23]

    Yang M M, Bhatnagar A, Luo Z D, Alexe M 2017 Sci. Rep. 7 43070

    [24]

    Das R R, Kim D M, Baek S H, Zavaliche F, Yang S Y, Ke X, Streiffer S K, Rzchowski M S, Ramesh R, Pan X Q, Eom C B 2006 Appl. Phys. Lett. 88 242904

    [25]

    Limin K, Wei Z, Yi S, Ouyang J 2014 Phys. Stat. Sol. a 211 565

    [26]

    Sharma S, Singh V, Kotnala R K, Dwivedi R K 2014 J . Mater. Sci. 25 1915

    [27]

    Wang Y, Jiang Q H, He H C, Nan C W 2006 Appl. Phys. Lett. 88 142503

    [28]

    Qin M, Yao K, Liang Y C 2009 Appl. Phys. Lett. 95 233

  • [1] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [2] Ren Cheng-Chao, Zhou Jia-Kai, Zhang Bo-Yu, Liu Zhang, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Status and prospective of high-efficiency c-Si solar cells based on tunneling oxide passivation contacts. Acta Physica Sinica, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] Zhang Bo-Yu, Zhou Jia-Kai, Ren Cheng-Chao, Su Xiang-Lin, Ren Hui-Zhi, Zhao Ying, Zhang Xiao-Dan, Hou Guo-Fu. Design and optimization of passivation layers and emitter layers in silicon heterojunction solar cells. Acta Physica Sinica, 2021, 70(18): 188401. doi: 10.7498/aps.70.20210674
    [4] Chen Jun-Fan, Ren Hui-Zhi, Hou Fu-Hua, Zhou Zhong-Xin, Ren Qian-Shang, Zhang De-Kun, Wei Chang-Chun, Zhang Xiao-Dan, Hou Guo-Fu, Zhao Ying. Passivation optimization and performance improvement of planar a-Si:H/c-Si heterojunction cells in perovskite/silicon tandem solar cells. Acta Physica Sinica, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [5] Zhang Yong, Shi Yi-Min, Bao You-Zhen, Yu Xia, Xie Zhong-Xiang, Ning Feng. Effect of surface passivation on the electronic properties of GaAs nanowire:A first-principle study. Acta Physica Sinica, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [6] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [7] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [8] Chen Pei-Zhuan, Hou Guo-Fu, Suo Song, Ni Jian, Zhang Jian-Jun, Zhang Xiao-Dan, Zhao Ying. Simulation, design and fabrication of one-dimensional photonic crystal back reflector for silicon thin film solar cell. Acta Physica Sinica, 2014, 63(12): 128801. doi: 10.7498/aps.63.128801
    [9] Liang Lei, Xu Qin-Fang, Hu Man-Li, Sun Hao, Xiang Guang-Hua, Zhou Li-Bin. Investigation of anti-reflection properties of crystalline silicon solar cell surface silicon nanowire arrays. Acta Physica Sinica, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [10] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [11] Zhang Xiang, Liu Bang-Wu, Xia Yang, Li Chao-Bo, Liu Jie, Shen Ze-Nan. The passivation of Al2O3 and its applications in the crystalline silicon solar cell. Acta Physica Sinica, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [12] He Yue, Dou Ya-Nan, Ma Xiao-Guang, Chen Shao-Bin, Chu Jun-Hao. Passivation and stability of thermal atomic layer deposited Al2O3 on CZ-Si. Acta Physica Sinica, 2012, 61(24): 248102. doi: 10.7498/aps.61.248102
    [13] Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning. The effect of oxidation randomly textured up-pyramid on the silicon solar cell. Acta Physica Sinica, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [14] Zhang Xiao-Dan, Sun Fu-He, Xu Sheng-Zhi, Wang Guang-Hong, Wei Chang-Chun, Sun Jian, Hou Guo-Fu, Geng Xin-Hua, Xiong Shao-Zhen, Zhao Ying. Performance optimization of p-i-n type microcrystalline silicon thin films solar cells deposited in single chamber. Acta Physica Sinica, 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [15] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [16] Zhao Lei, Zhou Chun-Lan, Li Hai-Ling, Diao Hong-Wei, Wang Wen-Jing. Optimizing polymorphous silicon back surface field of a-Si(n)/c-Si(p) heterojunction solar cells by simulation. Acta Physica Sinica, 2008, 57(5): 3212-3218. doi: 10.7498/aps.57.3212
    [17] He Jian-Xiong, Zheng Jia-Gui, Li Wei, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Bing, Lei Zhi, Wu Li-Li, Wang Wen-Wu. A study of back contacts of CdTe thin film solar cells. Acta Physica Sinica, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [18] Zhang Xiao-Dan, Zhao Ying, Gao Yan-Tao, Chen Fei, Zhu Feng, Wei Chang-Chun, Sun Jian, Geng Xin-Hua, Xiong Shao-Zhen. Investigation of improved conversion efficiency of microcrystalline silicon thin film solar cells. Acta Physica Sinica, 2006, 55(12): 6697-6700. doi: 10.7498/aps.55.6697
    [19] LI GU-BO, ZHANG FU-LONG, CHEN HUA-JIE, FAN HONG-LEI, YU MING-REN, HOU XIAO-YUA. SURFACE PASSIVATION OF LIGHT-EMITTING POROUS SILICON BY NITRIDE. Acta Physica Sinica, 1996, 45(7): 1232-1238. doi: 10.7498/aps.45.1232
    [20] XIA YI-BEN, AN QI-LIN, JU JIAN-HUA, SHI WEI-MIN, WANG HONG. INVESTIGATION OF a-C:H FILMS DEPOSITED ON SILICON SOLAR CELL AS ANTIREFLECTIVE COATING. Acta Physica Sinica, 1993, 42(1): 46-50. doi: 10.7498/aps.42.46
Metrics
  • Abstract views:  4778
  • PDF Downloads:  253
  • Cited By: 0
Publishing process
  • Received Date:  17 April 2017
  • Accepted Date:  25 May 2017
  • Published Online:  05 August 2017

/

返回文章
返回