Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flow unit model in metallic glasses

Wang Zheng Wang Wei-Hua

Citation:

Flow unit model in metallic glasses

Wang Zheng, Wang Wei-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metallic glass is a promising metallic material with many unique properties, and also considered as a model system to study the mysteries of amorphous materials. Recently, many experimental and simulation results supported the existence of “flow unit” in metallic glass. In this paper, we review the background, the theoretical and experimental evidences of flow unit model. Flow units are considered as those loosely packed regions embedded inside the elastic matrix and behave like viscous liquid. Compared with the matrix, flow unit regions have low modulus and strength, low viscosity, high atomic mobility and stand in the saddle points on energy landscape. Therefore, flow units can be treated as dynamical defects in metallic glass. The feature, activation and evolution process of flow unit region in metallic glass as well as their correlation with property in metallic glass are also reviewed. Through dynamical mechaincal methods like dynamical mechanical spectra and stress relaxation, flow unit region and its properties can be distinguished and studied. A three-parameter physical model is proposed to describe the mechnical behaivors of flow units. The activations and evolutions of flow unit under different temperature and strain conditions are studied. A three-stage evolution process is found and the relation with mechanical performance and relaxation behavior is established. The characteristics of flow units are also related to various properties of metallic glass, like plasticity, strength, fracture and boson peaks. By using the thermal, mechanical and high pressure aging procedues, the properties of metallic glass can be manipulated as desired through adjusting the density of flow units. We show that the flow unit model not only helps to understand the mechanism behind many long-standing issues like deformation, glass transition dynamic relaxations, and the connection between strucutre and properties and performance of metallic glasses, but also is crucial for tuning and designing the properties of metallic glasses.
      Corresponding author: Wang Zheng, wangzhenglofty@gmail.com;whw@iphy.ac.cn ; Wang Wei-Hua, wangzhenglofty@gmail.com;whw@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856800), the National Natural Science Foundation of China (Grant Nos. 51271195, 5141101072), and the Key Project of Chinese Academy of Sciences.
    [1]

    Macfarlane A, Martin G 2011 The Glass Bathyscaphe: How Glass Changed the World (Profile Books)

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [4]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [5]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [6]

    Greer A, Ma E 2007 MRS Bull. 32 611

    [7]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M 2011 Phys. Rev. Lett. 106 125504

    [8]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [9]

    Hirth J P 1968 Theory of Dislocations (New York., Mcgraw Hill Book Company)

    [10]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [11]

    Spaepen F 1977 Acta Metall. 25 407

    [12]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [13]

    Argon A 1979 Acta Metall. 27 47

    [14]

    Falk M, Langer J 1998 Phys. Rev. E 57 7192

    [15]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [16]

    Schall P, Weitz D A, Spaepen F 2007 Science 318 1895

    [17]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [18]

    Keys A S, Abate A R, Glotzer S C, Durian D J 2007 Nat. Phys. 3 260

    [19]

    Richert R 2010 Eur. Phys. J. Spec. Top. 189 223

    [20]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [21]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [22]

    Ngai K, Lunkenheimer P, Leon C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [23]

    Kê T S 1949 J. Appl. Phys. 20 274

    [24]

    Hu L N, Yue Y 2008 J. Phys. Chem. B 112 9053

    [25]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183

    [26]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. : Condens. Matter 23 142202

    [28]

    Zhu Z G, Li Y, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K, Wang W H 2014 J. Chem. Phys. 141 084506

    [29]

    Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907

    [30]

    Xue R J, Zhao L, Zhang B, Bai H Y, Wang W H, Pan M X 2015 Appl. Phys. Lett. 107 241902

    [31]

    Wang Z 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王峥 2013 博士学位论文 (北京: 中国科学院大学)]

    [32]

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 4 6 (in Chinese) [汪卫华 2014 中国科学: 物理学 力学 天文学 4 6]

    [33]

    Liu S T, Jiao W, Sun B A, Wang W H 2013 J. Non-Cryst. Solids 3 76

    [34]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [35]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [36]

    Huo L S, Zeng J, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [37]

    Huo L S 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [霍利山 2013 博士学位论文 (北京: 中国科学院大学)]

    [38]

    Makarov A, Khonik V, Mitrofanov Y P, Granato A, Joncich D, Khonik S 2013 Appl. Phys. Lett. 102 091908

    [39]

    Li Y Z, Zhao L Z, Wang C, Lu Z, Bai H Y, Wang W H 2015 J. Chem. Phys. 143 041104

    [40]

    Lacks D J, Osborne M J 2004 Phys. Rev. Lett. 93 255501

    [41]

    Guan P, Chen M, Egami T 2010 Phys. Rev. Lett. 104 205701

    [42]

    Lu Z, Yang X, Sun B A, Li Y, Chen K, Wang W H, Bai H Y 2017 Scr. Mater. 130 229

    [43]

    Liu S T, Wang Z, Peng H, Yu H, Wang W H 2012 Scr. Mater. 67 9

    [44]

    Sun Y T, Cao C, Huang K, Shi J, Zhao L, Li M, Bai H, Gu L, Zheng D, Wang W H 2016 Intermetallics 74 31

    [45]

    Krausser J, Samwer K H, Zaccone A 2015 Proc. Natl. Acad. Sci. USA 112 13762

    [46]

    Wang Z, Ngai K, Wang W H 2015 J. Appl. Phys. 118 034901

    [47]

    Jiang H Y, Luo P, Wen P, Bai H Y, Wang W H, Pan M 2016 J. Appl. Phys. 120 145106

    [48]

    Yue Y, Angell C A 2004 Nature 427 717

    [49]

    Jiao W, Wen P, Peng H, Bai H Y, Sun B A, Wang W 2013 Appl. Phys. Lett. 102 101903

    [50]

    Cao X F, Gao M, Zhao L, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 084906

    [51]

    Zhao L Z, Xue R, Li Y, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 244901

    [52]

    Ge T P, Gao X, Huang B, Wang W H, Bai H Y 2015 Intermetallics 67 47

    [53]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905

    [54]

    Zhao L Z, Xue R, Zhu Z, Lu Z, Axinte E, Wang W H, Bai H Y 2014 J. Appl. Phys. 116 103516

    [55]

    Lewandowski J, Wang W H, Greer A 2005 Philos. Mag. Lett. 85 77

    [56]

    Wang D, Zhao D, Ding D, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

    [57]

    Xi X K, Zhao D, Pan M X, Wang W H, Wu Y, Lewandowski J 2005 Phys. Rev. Lett. 94 125510

    [58]

    Gao M, Ding D, Zhao D, Bai H Y, Wang W H 2014 Mater. Sci. Eng. A 617 89

    [59]

    Gao M, Cao X, Ding D, Wang B, Wang W H 2017 Mater. Sci. Eng. A 686 65

    [60]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [61]

    Wang D, Zhu Z, Xue R, Ding D, Bai H Y, Wang W H 2013 J. Appl. Phys. 114 173505

    [62]

    Xue R J, Wang D, Zhu Z, Ding D, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [63]

    Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M, Richert R 2015 Phys. Rev. Lett. 115 185501

    [64]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [65]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [66]

    Ketov S, Sun Y, Nachum S, Lu Z, Checchi A, Beraldin A, Bai H Y, Wang W H, Louzguine-Luzgin D, Carpenter M, Greer A L 2015 Nature 524 200

    [67]

    Xue R J, Zhao L Z, Shi C, Ma T, Xi X, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H, Bai H Y 2016 Appl. Phys. Lett. 109 221904

    [68]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

  • [1]

    Macfarlane A, Martin G 2011 The Glass Bathyscaphe: How Glass Changed the World (Profile Books)

    [2]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [3]

    Turnbull D 1952 J. Chem. Phys. 20 411

    [4]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [5]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [6]

    Greer A, Ma E 2007 MRS Bull. 32 611

    [7]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M 2011 Phys. Rev. Lett. 106 125504

    [8]

    Wagner H, Bedorf D, Kchemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439

    [9]

    Hirth J P 1968 Theory of Dislocations (New York., Mcgraw Hill Book Company)

    [10]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [11]

    Spaepen F 1977 Acta Metall. 25 407

    [12]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [13]

    Argon A 1979 Acta Metall. 27 47

    [14]

    Falk M, Langer J 1998 Phys. Rev. E 57 7192

    [15]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501

    [16]

    Schall P, Weitz D A, Spaepen F 2007 Science 318 1895

    [17]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501

    [18]

    Keys A S, Abate A R, Glotzer S C, Durian D J 2007 Nat. Phys. 3 260

    [19]

    Richert R 2010 Eur. Phys. J. Spec. Top. 189 223

    [20]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [21]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [22]

    Ngai K, Lunkenheimer P, Leon C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [23]

    Kê T S 1949 J. Appl. Phys. 20 274

    [24]

    Hu L N, Yue Y 2008 J. Phys. Chem. B 112 9053

    [25]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183

    [26]

    Yu H B, Wang W H, Bai H Y, Samwer K 2014 Natl. Sci. Rev. 1 429

    [27]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. : Condens. Matter 23 142202

    [28]

    Zhu Z G, Li Y, Wang Z, Gao X Q, Wen P, Bai H Y, Ngai K, Wang W H 2014 J. Chem. Phys. 141 084506

    [29]

    Luo P, Lu Z, Zhu Z G, Li Y Z, Bai H Y, Wang W H 2015 Appl. Phys. Lett. 106 031907

    [30]

    Xue R J, Zhao L, Zhang B, Bai H Y, Wang W H, Pan M X 2015 Appl. Phys. Lett. 107 241902

    [31]

    Wang Z 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [王峥 2013 博士学位论文 (北京: 中国科学院大学)]

    [32]

    Wang W H 2014 Sci. China: Phys. Mech. Astron. 4 6 (in Chinese) [汪卫华 2014 中国科学: 物理学 力学 天文学 4 6]

    [33]

    Liu S T, Jiao W, Sun B A, Wang W H 2013 J. Non-Cryst. Solids 3 76

    [34]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823

    [35]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906

    [36]

    Huo L S, Zeng J, Wang W H, Liu C T, Yang Y 2013 Acta Mater. 61 4329

    [37]

    Huo L S 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese) [霍利山 2013 博士学位论文 (北京: 中国科学院大学)]

    [38]

    Makarov A, Khonik V, Mitrofanov Y P, Granato A, Joncich D, Khonik S 2013 Appl. Phys. Lett. 102 091908

    [39]

    Li Y Z, Zhao L Z, Wang C, Lu Z, Bai H Y, Wang W H 2015 J. Chem. Phys. 143 041104

    [40]

    Lacks D J, Osborne M J 2004 Phys. Rev. Lett. 93 255501

    [41]

    Guan P, Chen M, Egami T 2010 Phys. Rev. Lett. 104 205701

    [42]

    Lu Z, Yang X, Sun B A, Li Y, Chen K, Wang W H, Bai H Y 2017 Scr. Mater. 130 229

    [43]

    Liu S T, Wang Z, Peng H, Yu H, Wang W H 2012 Scr. Mater. 67 9

    [44]

    Sun Y T, Cao C, Huang K, Shi J, Zhao L, Li M, Bai H, Gu L, Zheng D, Wang W H 2016 Intermetallics 74 31

    [45]

    Krausser J, Samwer K H, Zaccone A 2015 Proc. Natl. Acad. Sci. USA 112 13762

    [46]

    Wang Z, Ngai K, Wang W H 2015 J. Appl. Phys. 118 034901

    [47]

    Jiang H Y, Luo P, Wen P, Bai H Y, Wang W H, Pan M 2016 J. Appl. Phys. 120 145106

    [48]

    Yue Y, Angell C A 2004 Nature 427 717

    [49]

    Jiao W, Wen P, Peng H, Bai H Y, Sun B A, Wang W 2013 Appl. Phys. Lett. 102 101903

    [50]

    Cao X F, Gao M, Zhao L, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 084906

    [51]

    Zhao L Z, Xue R, Li Y, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 244901

    [52]

    Ge T P, Gao X, Huang B, Wang W H, Bai H Y 2015 Intermetallics 67 47

    [53]

    Ge T P, Wang W H, Bai H Y 2016 J. Appl. Phys. 119 204905

    [54]

    Zhao L Z, Xue R, Zhu Z, Lu Z, Axinte E, Wang W H, Bai H Y 2014 J. Appl. Phys. 116 103516

    [55]

    Lewandowski J, Wang W H, Greer A 2005 Philos. Mag. Lett. 85 77

    [56]

    Wang D, Zhao D, Ding D, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 123507

    [57]

    Xi X K, Zhao D, Pan M X, Wang W H, Wu Y, Lewandowski J 2005 Phys. Rev. Lett. 94 125510

    [58]

    Gao M, Ding D, Zhao D, Bai H Y, Wang W H 2014 Mater. Sci. Eng. A 617 89

    [59]

    Gao M, Cao X, Ding D, Wang B, Wang W H 2017 Mater. Sci. Eng. A 686 65

    [60]

    Huang B, Bai H Y, Wang W H 2014 J. Appl. Phys. 115 153505

    [61]

    Wang D, Zhu Z, Xue R, Ding D, Bai H Y, Wang W H 2013 J. Appl. Phys. 114 173505

    [62]

    Xue R J, Wang D, Zhu Z, Ding D, Zhang B, Wang W H 2013 J. Appl. Phys. 114 123514

    [63]

    Yu H B, Tylinski M, Guiseppi-Elie A, Ediger M, Richert R 2015 Phys. Rev. Lett. 115 185501

    [64]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501

    [65]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [66]

    Ketov S, Sun Y, Nachum S, Lu Z, Checchi A, Beraldin A, Bai H Y, Wang W H, Louzguine-Luzgin D, Carpenter M, Greer A L 2015 Nature 524 200

    [67]

    Xue R J, Zhao L Z, Shi C, Ma T, Xi X, Gao M, Zhu P W, Wen P, Yu X H, Jin C Q, Pan M X, Wang W H, Bai H Y 2016 Appl. Phys. Lett. 109 221904

    [68]

    Wang C, Yang Z Z, Ma T, Sun Y T, Yin Y Y, Gong Y, Gu L, Wen P, Zhu P, Long Y W, Yu X H, Jin C Q, Wang W H, Bai H Y 2017 Appl. Phys. Lett. 110 111901

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Effect of elemental substitution on transition threshold behaviours of Ge-As(Sb)-Se glasses. Acta Physica Sinica, 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [2] Jiang Wen-Long. Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20. Acta Physica Sinica, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [3] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [4] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [5] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [6] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [7] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [8] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [9] Jin Xiao, Wang Li-Min. Enthalpy relaxation studies of memory effect in various glass formers in the vicinity of glass transition. Acta Physica Sinica, 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [10] Xu Fu, Li Ke-Feng, Deng Xu-Hui, Zhang Ping, Long Zhi-Lin. Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model. Acta Physica Sinica, 2016, 65(4): 046101. doi: 10.7498/aps.65.046101
    [11] Zhang Zhang, Xiong Xian-Zhong, Yi Jiao-Jiao, Li Jin-Fu. Crystallization behavior and thermal stability of Al-Ni-RE metallic glasses. Acta Physica Sinica, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [12] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [13] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [14] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [15] Wu Xue-Bang, Shang Shu-Ying, Xu Qiao-Ling, Shui Jia-Peng, Zhu Zhen-Gang. Dynamic relaxation of polystyrene/poly(ethylene oxide) blends above glass transition temperature. Acta Physica Sinica, 2007, 56(8): 4798-4803. doi: 10.7498/aps.56.4798
    [16] Wang Xiu-Ying, Chen Ying, Zhang Ning-Yu, Zhao Li-Ping, Pang Yan-Tao, Wang Wen-Kui. Effect of pressure on the glass transition and crystallization dynamics of Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk amorphous alloy. Acta Physica Sinica, 2007, 56(7): 4004-4008. doi: 10.7498/aps.56.4004
    [17] Zhang Guo-Ying, Zhang Hui, Liu Chun-Ming, Zhou Yong-Jun. The study on the ultrafine mechanism of steels: strain-induced phase-transform ation form austenite to ferrite. Acta Physica Sinica, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [18] Zhao Zuo-Feng, Zhang Zhi, Li Zheng, Wen Ping, Zhao De-Qian, Pan Ming-Xiang, Wang Wan-Lu, Wang Wei-Hua. A new Pr-based bulk metallic glass and its properties. Acta Physica Sinica, 2004, 53(3): 850-853. doi: 10.7498/aps.53.850
    [19] Chen Zhi-Hao, Liu Lan-Jun, Zhang Bo, Xi Yun, Wang Qiang, Zu Fang-Qiu. Glass transition kinetic property of novel bulk Zr-Al-Ni-Cu (Nb,Ti) amorphous alloy*. Acta Physica Sinica, 2004, 53(11): 3839-3844. doi: 10.7498/aps.53.3839
    [20] Li Zheng, Bai Hai-Yang, Zhao De-Qian, Pan Ming-Xiang, Wang Wan-Lu, Wang Wei-Hua. Hard magnetic Pr55Al12Fe30Cu3 bulk metallic glass. Acta Physica Sinica, 2003, 52(3): 652-655. doi: 10.7498/aps.52.652
Metrics
  • Abstract views:  6820
  • PDF Downloads:  627
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2017
  • Accepted Date:  04 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回