Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress in U-based amorphous alloys

Ke Hai-Bo Pu Zhen Zhang Pei Zhang Peng-Guo Xu Hong-Yang Huang Huo-Gen Liu Tian-Wei Wang Ying-Min

Citation:

Research progress in U-based amorphous alloys

Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Uranium-based amorphous alloys are a unique family of amorphous materials, which have so far been less studied due to the high chemical activity and radioactivity of uranium metal. In this paper, we review the compositions, preparations and thermal stability characteristics of U-based amorphous alloys obtained in the early experimental studies, and summarizes our recent results of the preparations and material properties of stable U-based amorphous alloys. The latest progress in our study of U-based amorphous alloys is presented in the three aspects. Firstly, the preparation methods, alloy systems and compositions, formation and crystallization behaviors of the new U-based amorphous alloys, along with the preliminary mechanisms for their formation and structure stabilization are reviewed. A number of new uranium-based amorphous alloy systems have been established based on eutectic law and structural packing model. These alloys show high ability to form glass, and the reduction of glass transition temperatures of some alloys to those of conventional amorphous alloys. The formation rules of binary (U-Fe/U-Co/U-Cr), ternary (U-Co-Al/U-Fe-Sn) and multicomponent alloy system have been investigated. It was found that the ability to form glass is strongly related to some physical parameters such as the local cluster structure, the electron concentration, the enthalpy of mixing, the electronegativity of the alloy component as well as the atomic size. The fragilities of U-based amorphous alloys indicate that they belong to a class of strong glass forming system, which means that the critical dimensions of such amorphous alloys can be further enhanced, and bulk amorphous samples are expected to be prepared. The crystallization activation of this kind of amorphous alloy is higher, and the crystallization process is dominated by nucleation. Then, the microstructures especially the first high-resolution electron microscopic results of the unique amorphous materials are reviewed. Finally, the micro-mechanical and anti-corrosion properties are reported in great detail. It is found that U-based amorphous materials show excellent mechanical properties and corrosion resistance, and the strength and hardness are much higher than those of conventional crystalline uranium alloys, and the corrosion resistance is also superior to the latter, which may be caused by its disorderly amorphous structural characteristics. Amorphous alloys have been the subject of intense fundamental and application research in recent years. Stable U-based amorphous alloys appear to cover all physical phenomena displayed by amorphous alloys. The discovery of outstanding properties in these new alloys therefore would stimulate both the fundamental studies including structure, electronic, glass transition, crystallization, etc., and the application-orientated studies of the thermal stability, mechanical and corrosion properties.
      Corresponding author: Huang Huo-Gen, hhgeng2002@sina.com;apwangym@dlut.edu.cn ; Wang Ying-Min, hhgeng2002@sina.com;apwangym@dlut.edu.cn
    • Funds: Project supported by the National Defense Basic Scientific Research Program of China (Grant No. B1520133007), the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 51501169), the Science Challenge Program, China (Grant No. JCKY2016212A504), and the Planning Program of China Academy of Engineering Physics (Grant No. TCGH071601).
    [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Johnson W L 1999 MAS Bull. 24 42

    [4]

    Kui H W, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [5]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [6]

    Greer A L 1995 Science 267 1947

    [7]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    C G B, O E R 1978 Proccedings of the 3rd International Conference on Rapid Quenching. Sussex Brighton England p406

    [9]

    Eilliott R O, Koss D A, Giessen B C 1980 Script. Acta Metall. 10 1061

    [10]

    Bethune B 1969 J. Nucl. Mater. 31 197

    [11]

    Giessen B C, Elliott R O 1978 Proceedings of the 3rd International Conference on Rapid Quenching Sussex, Brighton, England, 1978 p9

    [12]

    Elliot R O, Smith J L, Finocchiaro R S 1981 Mater. Sci. Eng. 49 65

    [13]

    Elliot R O, Giessen B C 1982 Acta Metall. 30 785

    [14]

    Drehman A J, Poon S J 1985 J. Non. Crys. Solids 76 321

    [15]

    Wong K M, Poon S J 1986 Phys. Rev. B 34 7371

    [16]

    McElfresh M W, Plaskett T S, Gambino R J 1990 Appl. Phys. Lett. 57 730

    [17]

    Plaskett T S, McGuire T R, Fumagalli P 1991 J. Appl. Phys. 70 5855

    [18]

    Fumagalli P, Plaskett T S, McGuire T R 1992 Phys. Rev. B 46 6187

    [19]

    Homma Y, Shiokawa Y, Suzuki K 1995 Physica B 206-207 467

    [20]

    Homma Y, Takakuwa Y, Shiokawa Y 1998 J. Alloys Compd. 271-273 459

    [21]

    Ke H B, Xu H Y, Huang H G, Liu T W, Zhang P, Wu M, Zhang P G, Wang Y M 2017 J. Alloys Compd. 691 436

    [22]

    Huang H G, Ke H B, Zhang P, Wang Y M, Wu M, Liu T W 2016 J. Alloys Compd. 688 599

    [23]

    Huang H G, Ke H B, Wang Y M, Pu Z, Zhang P, Zhang P G, Liu T W 2016 J. Alloys Compd. 684 75

    [24]

    Huang H G, Ke H B, Zhang P G, Liu T W 2017 Rare Metal. Mat. Eng. (in press) (in Chinese) [黄火根, 柯海波, 张鹏国, 刘天伟 2017 稀有金属材料与工程 录用]

    [25]

    Huang H G, Wang Y M, Liu T W, Chen L, Zhang P G 2016 China Patent ZL201408142848 (in Chinese) [黄火根, 王英敏, 刘天伟, 陈亮, 张鹏国 2016 中国专利 ZL201408142848]

    [26]

    Huang H G, Liu T W, Wu X C, Wang Y M 2015 China Patent ZL2013103745149 (in Chinese) [黄火根, 刘天伟, 巫祥超, 王英敏 2015 中国专利 ZL2013103745149]

    [27]

    Huang H G, Wang Y M, Chen L, Pu Z, Zhang P G, Liu T W 2015 Acta Metal. Sin. 51 623 (in Chinese) [黄火根, 王英敏, 陈亮, 蒲朕, 张鹏国, 刘天伟 2015 金属学报 51 623]

    [28]

    Huang H G, Xu H Y, Zhang P G, Wang Y M, Ke H B, Zhang P, Liu T W 2016 Acta Metal. Sin. 53 233 (in Chinese) [黄火根, 徐宏扬, 张鹏国, 王英敏, 柯海波, 张培, 刘天伟 2016 金属学报 53 233]

    [29]

    Kim J J, Choi Y, Suresh S, Argon A S 2002 Science 295 654

    [30]

    Johnson W L, Kaltenboeck G, Demetriou M D, Schramm J P, Liu X, Samwer K, Kim C P, Hofmann D C 2011 Science 332 828

    [31]

    Hu L, Ye F 2013 J. Alloys Compd. 557 160

    [32]

    Joshi S S, Gkriniari A V, Katakam S, Dahotre N B 2015 J. Phys. D: Appl. Phys. 48 495501

    [33]

    Vázquez J, Wagner C, Villares P, Jiménez-Garay R 1996 Acta Mater. 44 4807

    [34]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [35]

    Zhao L, Jia H L, Xie S H, Zeng X R, Zhang T, Ma C L 2010 J. Alloys Compd. 504 S219

    [36]

    Qiao J C, Pelletier J M 2011 J. Non-Cryst. Solids 357 2590

    [37]

    Ozawa T 1965 Bull. Chem. Soc. Jpn. 38 1881

    [38]

    Bohmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [39]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [40]

    Wang T, Yang Y Q, Li J B, Rao G H 2011 J. Alloys Compd. 509 4569

    [41]

    Dalla Fontana G, Battezzati L 2013 Acta Mater. 61 2260

    [42]

    Malek J 1995 Therm. Acta 267 61

    [43]

    Lu W, Yan B, Huang W H 2005 J. Non-Cryst. Solids 351 3320

    [44]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [45]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [46]

    Lopes D A, Guisard Restivo T A, Padilha A F 2013 J. Nucl. Mater. 440 304

    [47]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [48]

    Wang W H 2012 Nat. Mater. 11 275

    [49]

    Wang Y M, Li Y F, Qiang J B, Geng Y X, Wang Q, Dong C, Mi S B 2014 J. Mater. Sci. 49 6007

    [50]

    Ke H B, Liu C T, Yang Y Q 2015 Sci. China: Tech. Sci. 58 47

    [51]

    Matthews D B 1975 Aust. J. Chem. 28 243

    [52]

    El-Moneim A A, Gebert A, Uhlemann M, Gutfleisch O, Shultz L 2002 Corr. Sci. 44 1857

    [53]

    Chen T J 2012 in: Chen W Z, Dai P, Chen Y L, Wang Q T, Jiang Z (Eds.) Advanced Mechanical Design, Pts 1-3, vol. 479-481 (Stafa-Zurich: Trans Tech Publications Ltd.) pp1795

    [54]

    Pegg I L 2015 Phys. Today 68 33

  • [1]

    Klement W, Willens R, Duwez P 1960 Nature 187 869

    [2]

    Inoue A 2000 Acta Mater. 48 279

    [3]

    Johnson W L 1999 MAS Bull. 24 42

    [4]

    Kui H W, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [5]

    Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫华 2013 物理学进展 33 177]

    [6]

    Greer A L 1995 Science 267 1947

    [7]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [8]

    C G B, O E R 1978 Proccedings of the 3rd International Conference on Rapid Quenching. Sussex Brighton England p406

    [9]

    Eilliott R O, Koss D A, Giessen B C 1980 Script. Acta Metall. 10 1061

    [10]

    Bethune B 1969 J. Nucl. Mater. 31 197

    [11]

    Giessen B C, Elliott R O 1978 Proceedings of the 3rd International Conference on Rapid Quenching Sussex, Brighton, England, 1978 p9

    [12]

    Elliot R O, Smith J L, Finocchiaro R S 1981 Mater. Sci. Eng. 49 65

    [13]

    Elliot R O, Giessen B C 1982 Acta Metall. 30 785

    [14]

    Drehman A J, Poon S J 1985 J. Non. Crys. Solids 76 321

    [15]

    Wong K M, Poon S J 1986 Phys. Rev. B 34 7371

    [16]

    McElfresh M W, Plaskett T S, Gambino R J 1990 Appl. Phys. Lett. 57 730

    [17]

    Plaskett T S, McGuire T R, Fumagalli P 1991 J. Appl. Phys. 70 5855

    [18]

    Fumagalli P, Plaskett T S, McGuire T R 1992 Phys. Rev. B 46 6187

    [19]

    Homma Y, Shiokawa Y, Suzuki K 1995 Physica B 206-207 467

    [20]

    Homma Y, Takakuwa Y, Shiokawa Y 1998 J. Alloys Compd. 271-273 459

    [21]

    Ke H B, Xu H Y, Huang H G, Liu T W, Zhang P, Wu M, Zhang P G, Wang Y M 2017 J. Alloys Compd. 691 436

    [22]

    Huang H G, Ke H B, Zhang P, Wang Y M, Wu M, Liu T W 2016 J. Alloys Compd. 688 599

    [23]

    Huang H G, Ke H B, Wang Y M, Pu Z, Zhang P, Zhang P G, Liu T W 2016 J. Alloys Compd. 684 75

    [24]

    Huang H G, Ke H B, Zhang P G, Liu T W 2017 Rare Metal. Mat. Eng. (in press) (in Chinese) [黄火根, 柯海波, 张鹏国, 刘天伟 2017 稀有金属材料与工程 录用]

    [25]

    Huang H G, Wang Y M, Liu T W, Chen L, Zhang P G 2016 China Patent ZL201408142848 (in Chinese) [黄火根, 王英敏, 刘天伟, 陈亮, 张鹏国 2016 中国专利 ZL201408142848]

    [26]

    Huang H G, Liu T W, Wu X C, Wang Y M 2015 China Patent ZL2013103745149 (in Chinese) [黄火根, 刘天伟, 巫祥超, 王英敏 2015 中国专利 ZL2013103745149]

    [27]

    Huang H G, Wang Y M, Chen L, Pu Z, Zhang P G, Liu T W 2015 Acta Metal. Sin. 51 623 (in Chinese) [黄火根, 王英敏, 陈亮, 蒲朕, 张鹏国, 刘天伟 2015 金属学报 51 623]

    [28]

    Huang H G, Xu H Y, Zhang P G, Wang Y M, Ke H B, Zhang P, Liu T W 2016 Acta Metal. Sin. 53 233 (in Chinese) [黄火根, 徐宏扬, 张鹏国, 王英敏, 柯海波, 张培, 刘天伟 2016 金属学报 53 233]

    [29]

    Kim J J, Choi Y, Suresh S, Argon A S 2002 Science 295 654

    [30]

    Johnson W L, Kaltenboeck G, Demetriou M D, Schramm J P, Liu X, Samwer K, Kim C P, Hofmann D C 2011 Science 332 828

    [31]

    Hu L, Ye F 2013 J. Alloys Compd. 557 160

    [32]

    Joshi S S, Gkriniari A V, Katakam S, Dahotre N B 2015 J. Phys. D: Appl. Phys. 48 495501

    [33]

    Vázquez J, Wagner C, Villares P, Jiménez-Garay R 1996 Acta Mater. 44 4807

    [34]

    Kissinger H E 1957 Anal. Chem. 29 1702

    [35]

    Zhao L, Jia H L, Xie S H, Zeng X R, Zhang T, Ma C L 2010 J. Alloys Compd. 504 S219

    [36]

    Qiao J C, Pelletier J M 2011 J. Non-Cryst. Solids 357 2590

    [37]

    Ozawa T 1965 Bull. Chem. Soc. Jpn. 38 1881

    [38]

    Bohmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [39]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [40]

    Wang T, Yang Y Q, Li J B, Rao G H 2011 J. Alloys Compd. 509 4569

    [41]

    Dalla Fontana G, Battezzati L 2013 Acta Mater. 61 2260

    [42]

    Malek J 1995 Therm. Acta 267 61

    [43]

    Lu W, Yan B, Huang W H 2005 J. Non-Cryst. Solids 351 3320

    [44]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366

    [45]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [46]

    Lopes D A, Guisard Restivo T A, Padilha A F 2013 J. Nucl. Mater. 440 304

    [47]

    Ma D, Stoica A D, Wang X L, Lu Z P, Clausen B, Brown D W 2012 Phys. Rev. Lett. 108 085501

    [48]

    Wang W H 2012 Nat. Mater. 11 275

    [49]

    Wang Y M, Li Y F, Qiang J B, Geng Y X, Wang Q, Dong C, Mi S B 2014 J. Mater. Sci. 49 6007

    [50]

    Ke H B, Liu C T, Yang Y Q 2015 Sci. China: Tech. Sci. 58 47

    [51]

    Matthews D B 1975 Aust. J. Chem. 28 243

    [52]

    El-Moneim A A, Gebert A, Uhlemann M, Gutfleisch O, Shultz L 2002 Corr. Sci. 44 1857

    [53]

    Chen T J 2012 in: Chen W Z, Dai P, Chen Y L, Wang Q T, Jiang Z (Eds.) Advanced Mechanical Design, Pts 1-3, vol. 479-481 (Stafa-Zurich: Trans Tech Publications Ltd.) pp1795

    [54]

    Pegg I L 2015 Phys. Today 68 33

  • [1] Meng Shao-Yi, Hao Qi, Wang Bing, Duan Ya-Juan, Qiao Ji-Chao. Effects of cooling rate on β relaxation process and stress relaxation of La-based amorphous alloys. Acta Physica Sinica, 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] Zhang Jian, Hao Qi, Zhang Lang-Ting, Qiao Ji-Chao. Probing microstructural heterogeneity of La-based amorphous alloy under versatile mechanical stimuli. Acta Physica Sinica, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] Huang Bei-Bei, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. Dynamical relaxation and stress relaxation of Zr-based metallic glass. Acta Physica Sinica, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [4] Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao. The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude. Acta Physica Sinica, 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [5] Sun Ji, Shen Peng-Fei, Shang Qi-Zhong, Zhang Peng-Yan, Liu Li, Li Ming-Rui, Hou Long, Li Wei-Huo. Effects of adding B element on amorphous forming ability, magnetic properties, and mechanical properties of FePBCCu alloy. Acta Physica Sinica, 2023, 72(2): 026101. doi: 10.7498/aps.72.20221553
    [6] Ma Shuang, Hao Wei-Ye, Wang Xu-Dong, Zhang Wei, Yao Man. Mechanism analysis of metalloid elements affecting amorphous forming ability and magnetic properties of Co-Y-B alloy. Acta Physica Sinica, 2022, 71(22): 228102. doi: 10.7498/aps.71.20220873
    [7] Sun Xing, Mo Guang, Zhao Lin-Zhi, Dai Lan-Hong, Wu Zhong-Hua, Jiang Min-Qiang. Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering. Acta Physica Sinica, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [8] Ping Zhi-Hai, Zhong Ming, Long Zhi-Lin. Yield behavior of amorphous alloy based on percolation theory. Acta Physica Sinica, 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [9] Guan Peng-Fei, Wang Bing, Wu Yi-Cheng, Zhang Shan, Shang Bao-Shuang, Hu Yuan-Chao, Su Rui, Liu Qi. Heterogeneity: the soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [10] Chen Na, Zhang Ying-Qi, Yao Ke-Fu. Transparent magnetic semiconductors from ferromagnetic amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [11] Feng Tao, Horst Hahn, Herbert Gleiter. Progress of nanostructured metallic glasses. Acta Physica Sinica, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] Liu Yan-Hui. Combinatorial fabrication and high-throughput characterization of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [13] Wang Zheng, Wang Wei-Hua. Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [14] Bian Xi-Lei, Wang Gang. Ion irradiation of metallic glasses. Acta Physica Sinica, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [15] Wu Yuan, Song Wen-Li, Zhou Jie, Cao Di, Wang Hui, Liu Xiong-Jun, Lü Zhao-Ping. Ductilization of bulk metallic glassy material and its mechanism. Acta Physica Sinica, 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [16] Zhang Ya-Nan, Wang You-Jun, Kong Ling-Ti, Li Jin-Fu. Influence of Y addition on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy. Acta Physica Sinica, 2012, 61(15): 157502. doi: 10.7498/aps.61.157502
    [17] Zhang Hui, Zhang Guo-Ying, Yang Shuang, Wu Di, Qi Ke-Zhen. Effects of additional element on the glass forming ability and corrosion resistance of bulk Zr-based amorphous alloys. Acta Physica Sinica, 2008, 57(12): 7822-7826. doi: 10.7498/aps.57.7822
    [18] Yan Zhi-Jie, Li Jin-Fu, Zhou Yao-He, Wu Yan-Qing. Indentation-induced crystallization in a metallic glass. Acta Physica Sinica, 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] Cheng Wei-Dong, Sun Min-Hua, Li Jia-Yun, Wang Ai-Ping, Sun Yong-Li, Liu Fang, Liu Xiong-Jun. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy. Acta Physica Sinica, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] Shi Hui-Gang, Fu Jun-Li, Xue De-Sheng. Magnetic properties of amorphous Fe89.7P10.3 alloy nanowire arrays. Acta Physica Sinica, 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
Metrics
  • Abstract views:  6061
  • PDF Downloads:  373
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2017
  • Accepted Date:  26 June 2017
  • Published Online:  05 September 2017

/

返回文章
返回