Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charged paricle activation analysis for characterizing parameters of laser-accelerated protons

He Shu-Kai Liu Dong-Xiao Jiao Jin-Long Deng Zhi-Gang Teng Jian Zhang Zhi-Meng Hong Wei Gu Yu-Qiu

Citation:

Charged paricle activation analysis for characterizing parameters of laser-accelerated protons

He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu,
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The protons accelerated by ultra-high intensity laser have been extensively studied. The most commonly used detectors for measuring laser-driven proton are Tomspon parabola ion energy analyser (TP) and filtered nuclear track detectors, such as radiochromic films (RCF). The TP uses a parallel magneto-electric field to distinguish ions. This conventional technique can precisely identify the species and energy spectra of ions. However, the strong electromagnetic field produced by the laser-plasma interaction has an effect on TP, which results in no spatial resolution of TP. The RCF can give the spatial integration spectrum of proton, but it is easy to be saturated and cannot be reused anymore. In this paper, we present a method based on the traditional charged particle activation analysis and the gamma-gamma coincidence measurement to measure the spectrum of protons accelerated by ultra intense lasers. In this method, a copper plate stack is placed in the proton emission direction. Colliding with MeV proton converts 63Cu in the copper plates into radionuclide 63Zn whose decay can be easily observed and measured. Proton spectrum is then recovered from 63Zn decay counts from layers in the copper stack. The layout of diagnostics and the method to solve proton spectrum are discussed in detail and a self-consistent test is given. This spectrum analysis method is used in a laser-driven proton acceleration experiment carried out on XG-Ⅲ laser facility. The results show that protons up to 18 MeV are obtained, and the spatial integrated spectrum and a laser-proton conversion efficiency of 1.07% are achieved. In conclusion, our method has some advantages as a laser-driven ion diagnostic tool. It has no saturation problem and is not affected by strong electromagnetic fields. The basic principle of charged particle activation analysis is based on nuclear reaction, and can be extended to the measuring of other charged particle beams besides protons, such as deuterons, helium ions produced by ultra-high intensity laser.
      Corresponding author: Gu Yu-Qiu, jminhong@126.com
    • Funds: Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013A0103003) and the Major Special Scientific Instruments and Equipment Development of Ministry of Science and Technology, China (Grant No. 2012YQ03014206).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Wagner F, Deppert O, Brabetz C, et al. 2016 Phys. Rev. Lett. 116 205002

    [3]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese)[董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方2010物理学报59 8733]

    [4]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [5]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y, Photonuclear 2000 Phys. Rev. Lett. 84 903

    [6]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [7]

    Schwoerer H, Ewald F, Sauerbrey R, Galy J, Magill J, Rondinella V, Schenkel R, Butz T 2003 Europhys. Lett. 61 47

    [8]

    Heinrich S, Joseph M, Burgard B 2006 Laser and Nuclei:Application of Ultrahigh Intensity Lasers in Nuclear Science (Lecture Notes in Physics 694) (Berlin:Springer Press) pp25-45

    [9]

    Wang N Y 2008 Physics 37 9 (in Chinese)[王乃彦2008物理37 9]

    [10]

    Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M, Zare S 2010 Energy Convers. Manag. 51 636

    [11]

    Petrov G M, Higginson D P, Davis J, Petrova T B, McNaney J M, McGuffey C, Qiao B, Beg F N 2012 Phys. Plasmas 19 093106

    [12]

    Lefebvre E, Humieres E, Fritzler S, Malka V 2006 J. Appl. Phys. 100 113308

    [13]

    Zhao G Q, Ren C G 1989 Nuclear Analyticle Techniques (Beijing:Atomic Energy Press) p40(in Chinese)[赵国庆, 任炽刚1989核分析技术(北京:原子能出版社)第40页]

    [14]

    Cobble J A, Flippo K A, Offermann D T, Lopez F E, Oertel J A, Mastrosimone D, Letzring S A, Sinenian N 2011 Rev. Sci. Instrum. 82 113504

    [15]

    Morrison J T, Willis C, Freeman R R, van Woerkom L 2011 Rev. Sci. Instrum. 82 033506

    [16]

    Nurnberg F, Schollmeier M, Brambrink E, Blazevic A, Carroll D C, Flippo K, Gautier D C, Geissel M, Harres K, Hegelich B M, Lundh O, Markey K, McKenna P, Neely D, Schreiber J, Roth M 2009 Rev. Sci. Instrum. 80 033301

    [17]

    Clark E 2001 Ph. D. Dissertation (London:University of London)

    [18]

    Santala M I K, Zepf M, Beg F N, Clark E L, Dangor A E, Krushelnick K, Tatarakis M, Watts I, Ledingham K W D, McCanny T, Spencer I, Machacek A C, Allott R, Clarke R J, Norreys P A 2001 Appl. Phys. Lett. 78 19

    [19]

    Yang J M, McKenna P, Ledingham K W D, McCanny T, Shimizu S, Robson L, Clarke R J, Neely D, Norreys P A, Wei M S, Krushelnick K, Nilson P, Mangles S P D, Singhal R P 2004 Appl. Phys. Lett. 84 675

    [20]

    Meadows J W 1953 Phys. Rev. 91 885

    [21]

    Higginson D P, McNaney J M, Swift D C, Petrov G M, Davis J, Frenje J A, Jarrott L C, Kodama R, Lancaster K L, Mackinnon A J, Nakamura H, Patel P K, Tynan G, Beg F N 2011 Phys. Plasmas 18 100703

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Wagner F, Deppert O, Brabetz C, et al. 2016 Phys. Rev. Lett. 116 205002

    [3]

    Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 59 8733 (in Chinese)[董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方2010物理学报59 8733]

    [4]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899

    [5]

    Cowan T E, Hunt A W, Phillips T W, Wilks S C, Perry M D, Brown C, Fountain W, Hatchett S, Johnson J, Key M H, Parnell T, Pennington D M, Snavely R A, Takahashi Y, Photonuclear 2000 Phys. Rev. Lett. 84 903

    [6]

    Boyer K, Luk T S, Rhodes C K 1988 Phys. Rev. Lett. 60 557

    [7]

    Schwoerer H, Ewald F, Sauerbrey R, Galy J, Magill J, Rondinella V, Schenkel R, Butz T 2003 Europhys. Lett. 61 47

    [8]

    Heinrich S, Joseph M, Burgard B 2006 Laser and Nuclei:Application of Ultrahigh Intensity Lasers in Nuclear Science (Lecture Notes in Physics 694) (Berlin:Springer Press) pp25-45

    [9]

    Wang N Y 2008 Physics 37 9 (in Chinese)[王乃彦2008物理37 9]

    [10]

    Sadighi-Bonabi R, Irani E, Safaie B, Imani Kh, Silatani M, Zare S 2010 Energy Convers. Manag. 51 636

    [11]

    Petrov G M, Higginson D P, Davis J, Petrova T B, McNaney J M, McGuffey C, Qiao B, Beg F N 2012 Phys. Plasmas 19 093106

    [12]

    Lefebvre E, Humieres E, Fritzler S, Malka V 2006 J. Appl. Phys. 100 113308

    [13]

    Zhao G Q, Ren C G 1989 Nuclear Analyticle Techniques (Beijing:Atomic Energy Press) p40(in Chinese)[赵国庆, 任炽刚1989核分析技术(北京:原子能出版社)第40页]

    [14]

    Cobble J A, Flippo K A, Offermann D T, Lopez F E, Oertel J A, Mastrosimone D, Letzring S A, Sinenian N 2011 Rev. Sci. Instrum. 82 113504

    [15]

    Morrison J T, Willis C, Freeman R R, van Woerkom L 2011 Rev. Sci. Instrum. 82 033506

    [16]

    Nurnberg F, Schollmeier M, Brambrink E, Blazevic A, Carroll D C, Flippo K, Gautier D C, Geissel M, Harres K, Hegelich B M, Lundh O, Markey K, McKenna P, Neely D, Schreiber J, Roth M 2009 Rev. Sci. Instrum. 80 033301

    [17]

    Clark E 2001 Ph. D. Dissertation (London:University of London)

    [18]

    Santala M I K, Zepf M, Beg F N, Clark E L, Dangor A E, Krushelnick K, Tatarakis M, Watts I, Ledingham K W D, McCanny T, Spencer I, Machacek A C, Allott R, Clarke R J, Norreys P A 2001 Appl. Phys. Lett. 78 19

    [19]

    Yang J M, McKenna P, Ledingham K W D, McCanny T, Shimizu S, Robson L, Clarke R J, Neely D, Norreys P A, Wei M S, Krushelnick K, Nilson P, Mangles S P D, Singhal R P 2004 Appl. Phys. Lett. 84 675

    [20]

    Meadows J W 1953 Phys. Rev. 91 885

    [21]

    Higginson D P, McNaney J M, Swift D C, Petrov G M, Davis J, Frenje J A, Jarrott L C, Kodama R, Lancaster K L, Mackinnon A J, Nakamura H, Patel P K, Tynan G, Beg F N 2011 Phys. Plasmas 18 100703

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Ma Wen-Jun, Liu Zhi-Peng, Wang Peng-Jie, Zhao Jia-Rui, Yan Xue-Qing. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes. Acta Physica Sinica, 2021, 70(8): 084102. doi: 10.7498/aps.70.20202115
    [3] Jin Ya-Qing, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang. Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement. Acta Physica Sinica, 2021, 70(7): 074202. doi: 10.7498/aps.70.20201648
    [4] Li Yong-Ming,  Wang Liang,  Chen Xiang-Lin,  Ruan Nian-Shou,  Zhao De-Shan. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission. Acta Physica Sinica, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [5] He Shu-Kai, Qi Wei, Jiao Jin-Long, Dong Ke-Gong, Deng Zhi-Gang, Teng Jian, Zhang Bo, Zhang Zhi-Meng, Hong Wei, Zhang Hui, Shen Bai-Fei, Gu Yu-Qiu. Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method. Acta Physica Sinica, 2018, 67(22): 225202. doi: 10.7498/aps.67.20181504
    [6] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [7] Zhou Lin, Jiang Shi-Lun, Qi Jian-Min, Wang Li-Zong. Study of magnetic proton recoil technology for measurement of deuterium-tritium neutron spectrum. Acta Physica Sinica, 2012, 61(7): 072902. doi: 10.7498/aps.61.072902
    [8] Ding Guang-Tao. Analytical mechanics representations of a moving charged particle in a magnetic field with radiation friction. Acta Physica Sinica, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [9] Ma Hai-Qiang, Li Lin-Xia, Wang Su-Mei, Wu Zhang-Bin, Jiao Rong-Zhen. An all-fiber method to measure the wave-particle duality of light. Acta Physica Sinica, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [10] Shao Ming-Zhu, Luo Shi-Yu. The sine-squared potential and the band structure for channelling effects. Acta Physica Sinica, 2007, 56(6): 3407-3410. doi: 10.7498/aps.56.3407
    [11] Sun Jian, Bai Min-Dong, Mao Cheng-Qi, Bai Xi-Yao. Study on measurement of concentration of uni-polarity particles. Acta Physica Sinica, 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [12] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [13] Chang Jun-Tao, Wu Ling-An. Absolute self-calibration of the quantum efficiency of single-photon detectors. Acta Physica Sinica, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [14] HUANG XIANG-YOU. DOUBLE WAVE DESCRIPTION OF THE MOTION FOR A CHARGED PARTICLE IN MASS SPECTROMETER. Acta Physica Sinica, 1996, 45(5): 729-737. doi: 10.7498/aps.45.729
    [15] HUANG XIANG-YOU, LIU QUAN-HUI, TIAN XU, QIU ZHONG-PING. DOUBLE WAVE DESCRIPTION OF THE MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD. Acta Physica Sinica, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [16] YANG JIN-GANG, LI WEI-JIANG, GUO QING-JIANG, ZHU GUANG-HUA, JIANG CHEN-LIE. A CHARGED PARTICLE SPECTROGRAPH OF SEMICONDUCTOR DETECTOR WITH A SMALL MAGNETIC ANALYZER. Acta Physica Sinica, 1974, 23(1): 52-62. doi: 10.7498/aps.23.52
    [17] WANG PEY. THE PERIPHERAL ELECTROMAGNETIC INTERACTIONS OF THE FAST CHARGED PARTICLES AND NUCLEONS. Acta Physica Sinica, 1965, 21(8): 1533-1543. doi: 10.7498/aps.21.1533
    [18] A. F. DuNAITSEV, V. S. PANTUEV, YU. D. PROKOSHKIN, TANG SYAO-WEI, M. N. KHACHATURYAN. MEASUREMENT OF THE PANOFSKY RATIO BY THE METHOD OF GAMMA-GAMMA COINCIDENCES. Acta Physica Sinica, 1962, 18(4): 218-220. doi: 10.7498/aps.18.218
    [19] WANG AO, LI HO-NIAN, CHEN ER-CHIH, HSIAO CINEN. THE DIRECT PRODUCTION OF ELECTRON PAIRS BY HIGH ENERGY CHARGED PARTICLES. Acta Physica Sinica, 1961, 17(6): 263-272. doi: 10.7498/aps.17.263
    [20] HSU YUNG-CHANG, CHENG LIN-SHENG. COINCIDENCES CAUSED BY COMPTON BACKSCATTERING OF GAMMA-RAYS. Acta Physica Sinica, 1958, 14(2): 114-120. doi: 10.7498/aps.14.114
Metrics
  • Abstract views:  4556
  • PDF Downloads:  176
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2017
  • Accepted Date:  18 July 2017
  • Published Online:  05 October 2017

/

返回文章
返回