Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantum spin Hall effect in metamaterials

Long Yang Ren Jie Jiang Hai-Tao Sun Yong Chen Hong

Citation:

Quantum spin Hall effect in metamaterials

Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum spin Hall effect (QSHE) of electrons has improved the development of condensed matter researchnowadays, which describesone kind of spin-dependent quantum transport behavior in solid state. Recently, a variety of theoretical and experimental work has revealed that Maxwell equations, which is formulated 150 years ago and ultimately describeproperties of light, can exhibit an intrinsic quantum spin Hall effect of light. The evanescent wave supported on the interface among different media behaves strong spin-momentum locking. With the rapid development of new optics materials, metamaterials, we can not only adjust the optical parameters of media arbitrarily, but also introduce a lot of complex spin-orbit interaction mechanism. Based on metamaterials, the essential physical mechanism behind quantum spin Hall effect of light can be understood deeply and verified easily. The purpose of this review is to give a brief introduction to quantum spin Hall effect of light in metamaterials. These include, for example, the physical essence of QSHE of light, the topological interface mode between permittivity negative and permeability negative metamaterials, QSHE in topological circuits.
      Corresponding author: Ren Jie, xonics@tongji.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11775159) and the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1443800).
    [1]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [2]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603

    [3]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [4]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [6]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045

    [7]

    Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057

    [8]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [9]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [10]

    Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782

    [11]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821

    [13]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448

    [14]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748

    [15]

    Belinfante F J 1940 Physica 7 449

    [16]

    Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001

    [17]

    Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037

    [18]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300

    [19]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001

    [20]

    Stone M 2015 Science 348 1432

    [21]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

    [22]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789

    [23]

    Bliokh K Y, Nori F 2015 Phys. Reports 592 1

    [24]

    Van Mechelen T, Jacob Z 2016 Optica 3 118

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [26]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026

    [27]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67

    [28]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [29]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [30]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724

    [31]

    Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [32]

    Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226

    [33]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742

    [34]

    Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842

    [35]

    Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580

    [36]

    Silveirinha M G 2015 Phys. Rev. B 92 125153

    [37]

    Silveirinha M G 2016 Phys. Rev. B 93 075110

    [38]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)

    [39]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]

    [42]

    Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803

    [43]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272

    [44]

    Ningyuan J, Owens C, Sommer A, Schuster D, Simon J

  • [1]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [2]

    Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T, Macdonald A H 2004 Phys. Rev. Lett. 92 126603

    [3]

    Murakami S, Nagaosa N, Zhang S C 2003 Science 301 1348

    [4]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [5]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757

    [6]

    Hasan M Z, Kane C L 2010 Rev. Modern Phys. 82 3045

    [7]

    Qi X L, Zhang S C 2011 Rev. Modern Phys. 83 1057

    [8]

    Haldane F D M, Raghu S 2008 Phys. Rev. Lett. 100 013904

    [9]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772

    [10]

    Fang K, Yu Z, Fan S 2012 Nature Photon. 6 782

    [11]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, Macdonald A H, Shvets G 2012 Nature Mater. 12 233

    [12]

    Lu L, Joannopoulos J D, Soljačić M 2014 Nature Photon. 8 821

    [13]

    Bliokh K Y, Smirnova D, Nori F 2015 Science 348 1448

    [14]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nature Photon. 2 748

    [15]

    Belinfante F J 1940 Physica 7 449

    [16]

    Berry M V 2009 J. Opt. A: Pure and Applied Optics 11 094001

    [17]

    Bliokh K Y, Dressel J, Nori F 2014 New J. Phys. 16 093037

    [18]

    Bliokh K Y, Bekshaev A Y, Nori F 2014 Nature Commun 5 3300

    [19]

    Bekshaev A, Bliokh K Y, Soskin M 2011 J. Opt. 13 053001

    [20]

    Stone M 2015 Science 348 1432

    [21]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

    [22]

    Aiello A, Banzer P, Neugebauer M, Leuchs G 2015 Nature Photon. 9 789

    [23]

    Bliokh K Y, Nori F 2015 Phys. Reports 592 1

    [24]

    Van Mechelen T, Jacob Z 2016 Optica 3 118

    [25]

    Bekshaev A Y, Bliokh K Y, Nori F 2015 Phys. Rev. X 5 011039

    [26]

    Bliokh K Y, Bekshaev A Y, Nori F 2013 New J. Phys 15 033026

    [27]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67

    [28]

    Rodríguez-Fortuño F J, Marino G, Ginzburg P, O’Connor D, Martínez A, Wurtz G A, Zayats A V 2013 Science 340 328

    [29]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405

    [30]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724

    [31]

    Lin J, Mueller J P B, Wang Q, Yuan G, Antoniou N, Yuan X C, Capasso F 2013 Science 340 331

    [32]

    Kapitanova P V, Ginzburg P, Rodríguez-Fortuño F J,Filonov D S, Voroshilov P M, Belov P A, Zayats A V 2014 Nature Commun. 5 3226

    [33]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Reports 7 7742

    [34]

    Tan W, Sun Y, Chen H, Shen S Q 2014 Sci. Reports 4 3842

    [35]

    Shi X, Xue C, Jiang H, Chen H 2016 Opt. Express 24 18580

    [36]

    Silveirinha M G 2015 Phys. Rev. B 92 125153

    [37]

    Silveirinha M G 2016 Phys. Rev. B 93 075110

    [38]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications (New York: John Wiley & Sons)

    [39]

    Weeks C, Franz M 2010 Phys. Rev. B 82 085310

    [40]

    Goldman N, Urban D F, Bercioux D 2011 Phys. Rev. A 83 063601

    [41]

    Zhu W W, Hou S S, Long Y, Chen H, Ren J 2017 arXiv:1710.07268 [cond mat.mes hall]

    [42]

    Mecklenburg M, Regan B C 2011 Phys. Rev. Lett. 106 116803

    [43]

    Song D, Paltoglou V, Liu S, Zhu Y, Gallardo D, Tang L, Chen Z 2015 Nature Commun. 6 6272

    [44]

    Ningyuan J, Owens C, Sommer A, Schuster D, Simon J

  • [1] Xu Shi-Lin, Hu Yue-Fang, Yuan Dan-Wen, Chen Wei, Zhang Wei. Topological phase transitions in Tl2Ta2O7 under strain regulation. Acta Physica Sinica, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [2] Liu Xiang-Lian, Li Kai-Zhou, Li Xiao-Qiong, Zhang Qiang. Coexistence of quantum spin and valley hall effect in two-dimensional dielectric photonic crystals. Acta Physica Sinica, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Chen Le-Di, Fan Ren-Hao, Liu Yu, Tang Gong-Hui, Ma Zhong-Li, Peng Ru-Wen, Wang Mu. Broadband modulation of terahertz wave polarization states with flexible metamaterial. Acta Physica Sinica, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [5] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [6] Li Jia-Rui, Wang Zi-An, Xu Tong-Tong, Zhang Lian-Lian, Gong Wei-Jiang. Topological properties of the one-dimensional ${\cal {PT}}$-symmetric non-Hermitian spin-orbit-coupled Su-Schrieffer-Heeger model. Acta Physica Sinica, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [7] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [8] Lin Yue-Chai, Liu Fang, Huang Yi-Dong. Cherenkov radiation based on metamaterials. Acta Physica Sinica, 2020, 69(15): 154103. doi: 10.7498/aps.69.20200260
    [9] Wang Yan-Lan, Li Yan. Pseudospin states and topological phase transitions in two-dimensional photonic crystals made of dielectric materials. Acta Physica Sinica, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [10] Yang Chao, Chen Shu. Topological invariant in quench dynamics. Acta Physica Sinica, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [11] Liu Na, Hu Bian, Wei Hong-Peng, Liu Hong. Electrically controlled quantum spin Hall in narrow zigzag graphene nanoribbon. Acta Physica Sinica, 2018, 67(11): 117301. doi: 10.7498/aps.67.20180249
    [12] Hao Ning, Hu Jiang-Ping. Research progress of topological quantum states in iron-based superconductor. Acta Physica Sinica, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [13] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [14] Yang Yuan,  Chen Shuai,  Li Xiao-Bing. Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling. Acta Physica Sinica, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [15] Shen Qing-Wei, Xu Lin, Jiang Jian-Hua. Topological phase transitions in core-shell gyromagnetic photonic crystal. Acta Physica Sinica, 2017, 66(22): 224102. doi: 10.7498/aps.66.224102
    [16] Wang Qing-Hai, Li Feng, Huang Xue-Qin, Lu Jiu-Yang, Liu Zheng-You. The topological phase transition and the tunable interface states in granular crystal. Acta Physica Sinica, 2017, 66(22): 224502. doi: 10.7498/aps.66.224502
    [17] Wang Jian, Wu Shi-Qiao, Mei Jun. Topological phase transitions caused by a simple rotational operation in two-dimensional acoustic crystals. Acta Physica Sinica, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [18] Ma Xiao-Liang, Li Xiong, Guo Ying-Hui, Zhao Ze-Yu, Luo Xian-Gang. Meta-antenna: principle, device and application. Acta Physica Sinica, 2017, 66(14): 147802. doi: 10.7498/aps.66.147802
    [19] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [20] Geng Hu, Ji Qing-Shan, Zhang Cun-Xi, Wang Rui. Time-reversal-symmetry broken quantum spin Hall in Lieb lattice. Acta Physica Sinica, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
Metrics
  • Abstract views:  8051
  • PDF Downloads:  926
  • Cited By: 0
Publishing process
  • Received Date:  20 September 2017
  • Accepted Date:  27 October 2017
  • Published Online:  05 November 2017

/

返回文章
返回