Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel superconducting qubits and quantum physics

Zhao Shi-Ping Liu Yu-Xi Zheng Dong-Ning

Citation:

Novel superconducting qubits and quantum physics

Zhao Shi-Ping, Liu Yu-Xi, Zheng Dong-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the past years, superconducting quantum computation has received much attention and significant progress of the device design and fabrication has been made, which leads qubit coherence times to be improved greatly. Recently, we have successfully designed, fabricated, and tested the superconducting qubits based on the negative-inductance superconducting quantum interference devices (nSQUIDs), which are expected to have the advantages for the fast quantum information transfer and macroscopic quantum phenomenon study with a two-dimensional potential landscape. Their quantum coherence and basic physical properties have been demonstrated and systematically investigated. On the other hand, a new type of superconducting qubit, called transmon and Xmon qubit, has been developed in the meantime by the international community, whose coherence time has been gradually increased to the present scale of tens of microseconds. These devices are demonstrated to have many advantages in the sample design and fabrication, and multi-qubit coupling and manipulation. We have also studied this type of superconducting qubit. In collaboration with Zhejiang University and the University of Science and Technology of China, we have successfully fabricated various types of the coupled Xmon devices having the qubit numbers ranging from 4 to 10. Quantum entanglement, quantum algorithm of solving coupled linear equations, and quantum simulation of the many-body localization problem in solid-state physics have been demonstrated by using these devices. Also, we have made significant achievements in the studies of the macroscopic quantum phenomena, quantum dissipation, quantum microwave lasing, and some other quantum optics problems. In particular, Autler-Townes splitting under strong microwave drive, electromagnetically induced transparency, stimulated Raman adiabatic passage, microwave mixing, correlated emission lasing, and microwave frequency up-and-down conversion have been successfully studied, both experimentally and theoretically.
      Corresponding author: Zhao Shi-Ping, spzhao@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91321208).
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1] Wang Mei-Hong, Hao Shu-Hong, Qin Zhong-Zhong, Su Xiao-Long. Research advances in continuous-variable quantum computation and quantum error correction. Acta Physica Sinica, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [2] Zhou Zong-Quan. “Quantum memory” quantum computers and noiseless phton echoes. Acta Physica Sinica, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [3] Wang Ning, Wang Bao-Chuan, Guo Guo-Ping. New progress of silicon-based semiconductor quantum computation. Acta Physica Sinica, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [4] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [5] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] Chen Yang, Zhang Tian-Yang, Guo Guang-Can, Ren Xi-Feng. Research progress of integrated photonic quantum simulation. Acta Physica Sinica, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [7] Su Fei-Fan, Yang Zhao-Hua, Zhao Shou-Kuan, Yan Hai-Sheng, Tian Ye, Zhao Shi-Ping. Fabrication of superconducting qubits and auxiliary devices with niobium base layer. Acta Physica Sinica, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [8] Wang Chen-Xu, He Ran, Li Rui-Rui, Chen Yan, Fang Ding, Cui Jin-Ming, Huang Yun-Feng, Li Chuan-Feng, Guo Guang-Can. Advances in the study of ion trap structures in quantum computation and simulation. Acta Physica Sinica, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [9] Xu Da, Wang Yi-Pu, Li Tie-Fu, You Jian-Qiang. Coherent coupling in a driven qubit-magnon hybrid quantum system. Acta Physica Sinica, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [10] Zhang Jie-Yin, Gao Fei, Zhang Jian-Jun. Research progress of silicon and germanium quantum computing materials. Acta Physica Sinica, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [11] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [12] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [13] Yu Wan-Rang, Ji Xin. Superadiabatic scheme for fast generating Greenberger-Horne-Zeilinger state of three superconducting qubits. Acta Physica Sinica, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [14] Yu Xiang-Min, Tan Xin-Sheng, Yu Hai-Feng, Yu Yang. Topological quantum material simulated with superconducting quantum circuits. Acta Physica Sinica, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [15] Kong Xiang-Yu, Zhu Yuan-Ye, Wen Jing-Wei, Xin Tao, Li Ke-Ren, Long Gui-Lu. New research progress of nuclear magnetic resonance quantum information processing. Acta Physica Sinica, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [16] Fan Heng. Quantum computation and quantum simulation. Acta Physica Sinica, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [17] Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei. Progress of coupled superconducting qubits. Acta Physica Sinica, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [18] Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei. Progress of electromagnetically induced transparency based on superconducting qubits. Acta Physica Sinica, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [19] Ye Bin, Xu Wen-Bo, Gu Bin-Jie. Robust quantum computation of the quantum kicked Harper model and dissipative decoherence. Acta Physica Sinica, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] Ye Bin, Gu Rui-Jun, Xu Wen-Bo. Robust quantum computation of the kicked Harper model and quantum chaos. Acta Physica Sinica, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
Metrics
  • Abstract views:  7894
  • PDF Downloads:  410
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2018
  • Accepted Date:  14 May 2018
  • Published Online:  20 November 2019

/

返回文章
返回