Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity

Chen Yi-Hao Xu Wei Wang Yu-Qi Wan Xiang Li Yue-Feng Liang Ding-Kang Lu Li-Qun Liu Xin-Wei Lian Xiao-Juan Hu Er-Tao Guo Yu-Feng Xu Jian-Guang Tong Yi Xiao Jian

Citation:

Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity

Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian
PDF
HTML
Get Citation
  • Compared with conventional computation relying on the von Neumann architecture, brain-inspired computing has shown superior strength in various cognitive tasks. It has been generally accepted that information in the brain is represented and formed by vastly interconnected synapses. So the physical implementation of electronic synaptic devices is crucial to the development of brain-based computing systems. Among a large number of electronic synaptic devices, the memristors have attracted significant attention due to its simple structure and similarities to biological synapses. In this work, we first use two-dimensional material MXene as a resistive material and fabricate an electronic synapse based on a Cu/MXene/SiO2/W memristor. By using the unique properties of MXene, the conductance of the memristor can be modulated by the accumulation or reflux of Cu2+ at the physical switching layer, which can vividly simulate the mechanism of bio-synapses. Experimental results show that the Cu/MXene/SiO2/W memristor not only achieves stable bipolar analog resistance switching but also shows excellent long-term and short-term synaptic behaviors, including paired-pulse facilitation (PPF) and long-term potential/depression. By adjusting the pulse interval, the PPF index will change accordingly. In a biological system, the short-term plasticity is considered to be the key point for performing computational functions while the long-term plasticity is believed to underpin learning and memory functions. This work indicates that Cu/MXene/SiO2/W memristor with both long-term and short-term plasticity will have great application prospects for brain-inspired intelligence in the future.
      Corresponding author: Tong Yi, tongyi@njupt.edu.cn ; Xiao Jian, xiaoj@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704088, 61874059), the China Postdoctoral Science Foundation (Grant No. 2018M642290), the Open Fund of National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, China (Grant No. KFJJ20170101), the Provincial Key Talent Project of Education Department of Jiangsu Province, China (Grant Nos. SZDG2018007, TJ218001), and the Nanjing University of Posts and Telecommunications Foundation, China (Grant No. NY217116).
    [1]

    Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar

    [2]

    Mead C 1990 Proc. IEEE 78 1629

    [3]

    Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar

    [4]

    梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 物理学报 67 237302Google Scholar

    Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar

    [5]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [6]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003

    [7]

    Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar

    [8]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [9]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [10]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [11]

    Hirano T 2018 Cerebellum 17 756Google Scholar

    [12]

    Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar

    [13]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [14]

    Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar

    [15]

    Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar

    [16]

    Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar

    [17]

    Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [18]

    吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 物理学报 66 217304Google Scholar

    Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar

    [19]

    Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar

    [20]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130

    [21]

    Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172

    [22]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [23]

    Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932

    [24]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229

    [25]

    Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar

    [26]

    Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193

    [27]

    Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar

    [28]

    Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205

    [29]

    Liu S L, Friel D D 2008 J. Physiol.-London 586 4501

    [30]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [31]

    Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258

    [32]

    Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711

    [33]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

  • 图 1  (a) Cu/MXene/SiO2/W忆阻器结构示意图; (b) MXene的SEM照片; (c) 器件电铸I-V 曲线; (d) 器件Set/Reset的I-V曲线

    Figure 1.  (a) Device structures of the Cu/MXene/SiO2/W memristor; (b) SEM images of the MXene; (c) I-V curve of electroforming process; (d) I-V curve of Set/Reset process

    图 2  (a) 连续正向电压扫描下模拟特性I-V曲线; (b) 正向扫描电导与扫描次数的关系; (c) 连续负向电压扫描下模拟特性I-V曲线; (d) 负向扫描电导与扫描次数的关系

    Figure 2.  (a) Analog I-V curves under consecutive positive sweep voltage; (b) relationship between conductivity and scanning number under consecutive positive sweep voltage; (c) analog I-V curves under consecutive negative sweep voltage; (d) relationship between conductivity and scanning number under consecutive negative sweep voltage.

    图 3  在连续正向和负向三角尖峰脉冲下, 器件电导的变化趋势

    Figure 3.  Variation trend of conductance of the device with the continuous positive and negative voltage spike.

    图 4  (a) 两个连续脉冲刺激作用下的PPF特性曲线; (b) PPF 指数与脉冲时间间隔的关系

    Figure 4.  (a) PPF characteristic curve under two continuous pulse stimuli; (b) relationship between the PPF index and pulse interval.

    图 5  Cu/MXene/SiO2/W忆阻器生物响应机理 (a)正偏压下Cu2+的扩散与迁移运动; (b)负偏压下Cu2+的扩散与迁移运动; (c)撤去偏压, 电导丝的自主破灭; (d)残余电导丝与新形成的电导丝

    Figure 5.  Synapse-like mechanism of Cu/MXene/SiO2/W memristor: (a) Diffusion and migration of Cu2+ under positive voltage; (b) diffusion and migration of Cu2+ under negative voltage; (c) spontaneous rupture of conductive filament when the voltage is removed; (d) residual conductive filaments and newly formed conductive filaments.

  • [1]

    Chen Y H, Yu H Y, Gong J D, Ma M X, Han H, Wei H H, Xu W T 2019 Nanotechnology 30 012001Google Scholar

    [2]

    Mead C 1990 Proc. IEEE 78 1629

    [3]

    Zhao Y H, Jie J 2018 J. Nanosci. Nanotechnol. 18 8003Google Scholar

    [4]

    梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋 2018 物理学报 67 237302Google Scholar

    Liang D K, Chen Y H, Xu W, Ji X C, Tong Y, Wu G D 2018 Acta Phys. Sin. 67 237302Google Scholar

    [5]

    Dmitri B S, Gregory S S, Duncan R S, Williams R S 2008 Nature 453 80Google Scholar

    [6]

    Jeong H, Shi L P 2019 J. Phys. D: Appl. Phys. 52 023003

    [7]

    Waser R, Dittmann R, Staikov G, Kristof S 2009 Adv. Mater. 21 2632Google Scholar

    [8]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [9]

    Chang T, Jo S H, Lu W 2011 ACS Nano 5 7669Google Scholar

    [10]

    Kim M K, Lee J S 2018 ACS Nano 12 1680

    [11]

    Hirano T 2018 Cerebellum 17 756Google Scholar

    [12]

    Wang C H, He W, Tong Y, Zhao R 2016 Sci. Rep. 6 22970Google Scholar

    [13]

    Wang Z Q, Xu H Y, Li X H, Yu H, Liu Y C, Zhu X J 2012 Adv. Funct. Mater. 22 2759

    [14]

    Zhang X M, Liu S, Zhao X L, Wu F C, Wu Q T, Wang W, Cao R R, Fang Y L, Lv H B, Long S B, Liu Q, Liu M 2017 IEEE Electron Dev. Lett. 38 1208Google Scholar

    [15]

    Wang F, Ke S l, Qin C Z, Wang B, Long H, Wang K, Lu P X 2018 Opt. Laser Technol. 103 272Google Scholar

    [16]

    Sun D, Ye D L, Liu P, Tang Y G, Guo J, Wang L Z, Wang H Y 2018 Adv. Energy Mater. 8 1702383Google Scholar

    [17]

    Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [18]

    吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明 2017 物理学报 66 217304Google Scholar

    Wu Q T, Shi T, Zhao X L, Zhang X M, Wu F C, Cao R R, Long S B, Lv H B, Liu Q, Liu M 2017 Acta Phys. Sin. 66 217304Google Scholar

    [19]

    Liu C Y, Zhang Y X, Yang C P 2017 Sensors Mater. 30 463Google Scholar

    [20]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130

    [21]

    Voigt C A, Ghidiu M, Natu V, Barsoum M W 2018 J. Phys. Chem. C 122 23172

    [22]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [23]

    Wu Y T, Nie P, Wu L Y, Dou H, Zhang X G 2018 Chem. Eng. J. 334 932

    [24]

    Jiang X T, Liu S X, Liang W Y, Luo S J, He Z L, Ge Y Q, Wang H D, Cao R, Zhang F, Wen Q, Li J Q, Bao Q L, Fan D Y, Zhang H 2018 Laser Photon. Rev. 12 1700229

    [25]

    Zhao X L, Liu S, Niu J B, Liao L, Liu Q, Xiao X H, Lv H B, Long S B, Banerjee W, Li W Q, Si S Y, Liu M 2017 Small 13 1603948Google Scholar

    [26]

    Zhao X L, Ma J, Xiao X H, Liu Q, Shao L, Chen D, Liu S, Niu J B, Zhang X M, Wang Y, Cao R R, Wang W, Di Z F, Lv H B, Long S B, Liu M 2018 Adv. Mater. 30 1705193

    [27]

    Scott T, Salvatore A, Woo P, Lee Y Y, Salvati E A, Della Valle A G 2018 J. Arthroplast. 33 1120Google Scholar

    [28]

    Tempia F, Hoxha E, Negro G, Alshammari M A, Alshammari T K, Panova-Elektronova N, Laezza F 2015 Front. Cell. Neurosci. 9 205

    [29]

    Liu S L, Friel D D 2008 J. Physiol.-London 586 4501

    [30]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [31]

    Liu D Q, Cheng H F, Zhu X, Wang G, Wang N N 2013 ACS Appl. Mater. Interfaces 5 11258

    [32]

    Liu Q, Zhang X M, Luo Q, Zhao X L, Lv H B, Long S B, Liu M 2018 Sci. China: Phys. Mech. Astron. 61 088711

    [33]

    Suk J W, Kitt A, Magnuson C W, Hao Y, Ahmed S, An J, Swan A K, Boldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Wang Xuan, Du Jian-Rong, Li Zhi-Jun, Ma Ming-Lin, Li Chun-Lai. Coexisting discharge and synchronization of heterogeneous discrete neural network with crosstalk memristor synapses. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231972
    [3] Xiao Yi-Yao, He Jia-Hao, Chen Nan-Kun, Wang Chao, Song Ning-Ning. Enhanced microwave absorption performance of large-sized monolayer two-dimensional Ti3C2Tx based on loaded Fe3O4 nanoparticles. Acta Physica Sinica, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [4] Li Rui, Xu Bang-Lin, Zhou Jian-Fang, Jiang En-Hua, Wang Bing-Hong, Yuan Wu-Jie. A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle. Acta Physica Sinica, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [5] Du Li-Jie, Chen Jing-Wen, Wang Rong-Ming. Self-driven near infrared photoelectric detector based on C14H31O3P-Ti3C2/Au Schottky junction. Acta Physica Sinica, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [6] Han Dan, Liu Zhi-Hua, Liu Lu-Lu, Han Xiao-Mei, Liu Dong-Ming, Zhuo Kai, Sang Sheng-Bo. Preparation and gas sensing properties of a novel two-dimensional material Ti3C2Tx MXene. Acta Physica Sinica, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [7] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [8] Fabrication and Gas Sensing Properties of Two-Dimensional Ti3C2Tx Mxene. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211048
    [9] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [10] Guo Ke-Xin, Yu Hai-Yang, Han Hong, Wei Huan-Huan, Gong Jiang-Dong, Liu Lu, Huang Qian, Gao Qing-Yun, Xu Wen-Tao. Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis. Acta Physica Sinica, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [11] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [12] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [13] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [14] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [15] Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua. A digital-analog hybrid random number generator based on memristor. Acta Physica Sinica, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [16] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [17] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [19] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] Song Qing-Gong, Jiang En-Yong. Study on the structural and energetic properties of two-dimensional ground state of Ag+ ion-vacancy in fast ionic conductor AgxTiS2. Acta Physica Sinica, 2008, 57(3): 1823-1828. doi: 10.7498/aps.57.1823
Metrics
  • Abstract views:  11002
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2018
  • Accepted Date:  04 February 2019
  • Available Online:  01 May 2019
  • Published Online:  05 May 2019

/

返回文章
返回