Nucleation and coagulation of nanoparticles in a planar jet
Zhang Kai1 , Liu Yan-Hua2 , Gan Fu-Jun2
(1)澳大利亚皇家墨尔本理工大学航空学院,墨尔本 3083; (2)浙江大学力学系,杭州 310027
Abstract The nucleation and coagulation of nanoparticles in the binary system of water vapor (relative humidity 70%) and sulfuric acid vapor (5×10-6 ) were detailedly studied by performing numerical simulation in a planar jet (Re =8300). The large eddy simulation was utilized to calculate the flow field, and the particle field is obtained by using the direct quadrature method of moment to solve the particle general dynamic equation. The distributions of particle number concentration, volume concentration and average diameter were discussed. The result shows that the growth of the calculated momentum thickness is consistent with the previous experimental data. The interface of the jet will roll up and generate the coherent vortices which will lead to an obvious decrease of the specie concentration of sulfuric acid vapor and increase of number concentration of nanoparticles in the vortex core. The appearance of the coherent vortices increases the possibility of particle collision and enhances the particle coagulation. The nanoparticle nucleation is enhanced in the vortex core where high particle number concentration will accelerate the particle coagulation.
Key words :
nanoparticles
nucleation
coagulation
planar jet
Received: 2009-07-28
Published: 2010-06-15
[1] PPenttinen P, Timonen K L, Tiittanen P, Mirme A, Ruuskanen J, Pekkanen L 2001 Environ. Health Perspect. 109 319
[2] MMeng L J, Zhang K W, Zhong J X 2007 Acta Phys. Sin. 56 1009 (in Chinese) [孟利军、张凯旺、钟建新 2007 物理学报 56 1009]
[3] LLi J, Liu W L, Meng L J, Zhang K W, Zhong J X 2008 Acta Phys. Sin. 57 382 (in Chinese)[李俊、刘文亮、孟利军、张凯旺、钟建新 2008 物理学报 57 382]
[4] FFriedlander S K 2000 Smoke, Dust, and Haze : Fundamentals of Aerosol Dynamics (Oxford: Oxford University Press )
[5] TTalukdar S S, Swihart M T 2004 J. Aerosol Sci. 35 889
[6] WWang L, Marchisio1 D L, Vigil R D, Fox R O 2005 J. Colloid Interf. Sci. 282 380
[7] LLiu S, Lin J Z 2008 J. Hydrodyn. 20 1
[8] LLemmetty M, Ronkko T, Virtanen A, Keskinen J, Pirjola L 2008 Aerosol Sci. Technol. 42 916
[9] MMiller S E, Garrick S C 2004 Aerosol Sci. Technol. 38 79
[10] Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C 2007 Int. J. Nonlin. Sci. Num. 81 45
[11] Yu M Z, Lin J Z, Chen L H 2007 J. Appl. Math. Mech. 28 1445
[12] Yu M Z, Lin J Z, Chen L H 2006 Acta Mech. Sin. 22 29
[13] Yin Z Q, Lin J Z, Zhou K, Chan T L 2007 Int. J. Nonlin. Sci. Num. 81 535
[14] Yu M Z, Lin J Z, Xiong H B 2007 Chin. J. Chem. Eng. 15 828
[15] Yu M Z, Lin J Z, Chan T L 2008 Powder Technol. 181 9
[16] Yin Z Q, Lin J Z, Zhou K 2008 J. Appl. Math. Mech. 29 153
[17] Yu M Z, Lin J Z, Chan T L 2008 Chem. Eng. Sci. 63 2317
[18] Feng Y, Lin J Z 2008 Chin. Phys. 17 4547
[19] Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphase Flow 29 1355
[20] Smagorinsky J 1963 Month. Wea. Rev. 91 99
2.3.CO;2 target="_blank">
[21] Fox R O 2003 Computational Models for Turbulent Reacting Flow (Oxford: Oxford University Press)
[22] Marchisio D L, Fox R O 2005 J. Aerosol Sci. 36 43
[23] Vanni M 2000 J. Colloid Interf. Sci. 221 143
[24] Diemer R B, Olson J H 2002 Chem. Eng. Sci. 57 2211
[25] Park S H, Lee K W, Otto E, Fissan H 1999 J. Aerosol Sci. 30 3
[26] Otto E, Fissan H 1999 Adv. Powder Technol. 10 1
[27] McGraw R, Nemesure S, Schwartz S E 1998 J. Aerosol Sci. 29 761
[28] Holmes N S 2007 Atmos. Environ. 41 2183
[29] Vehkamaki H, Kulmala M, Lehtinen K E J, Noppel M 2003 Environ. Sci. Technol. 37 3392
[30] Upadhyay R R, Ezekoye O A 2006 J. Aerosol Sci. 37 799
[31] Otto E, Fissan H, Park S H, Lee K W, Otto E 1999 J. Aerosol 2 Sci. 30 17
[32] Pratsinis S E, Kim K S 1989 J. Aerosol Sci. 20 101
[33] Le Ribault C, Sarkar S, Stanley S A 1999 Phys. Fluids 11 3069
[34] Thomas F O, Chu H C 1989 Phys. Fluids 1 1566
[35] Vehkamaki H, Kulmala M, Napari I, Lehtinen K E J, Timmreck C, Noppel M, Laaksonen A 2002 J. Geophys. Res. 107 4622
[1]
Zhang Pei-Zeng,Li Rui-Shan,Xie Er-Qing,Yang Hua,Wang Xuan,Wang Tao,Feng You-Cai. The fabrication and field emission properties of ZnO nanoparticles-doped diamond-like carbon films by electrochemical deposition [J]. Acta Phys. Sin., 2012, 61(8): 088101.
[2]
Wei Jie,Chen Yan-Jun,Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles [J]. Acta Phys. Sin., 2012, 61(5): 057502.
[3]
Zheng Li-Si,Feng Miao,Zhan Hong-Bing. Effects of surface modification on nonlinear optical performance of gold nanoparticles [J]. Acta Phys. Sin., 2012, 61(5): 054212.
[4]
Yang Zhen-Ling,Liu Yu-Qiang,Yang Yan-Qiang. Extended Q-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles [J]. Acta Phys. Sin., 2012, 61(3): 037805.
[5]
Xu Bo,Wang Shu-Lin,Li Sheng-Juan,Li Lai-qiang. Study of synthesis and mechanism of MgFe2 O4 nanoparticles by ultrasonic Intensify [J]. Acta Phys. Sin., 2012, 61(3): 030703.
[6]
Zang Du-Yang,Zhang Yong-Jian. Interfacial rheological study of silica nanoparticle monolayer by an indentation approach [J]. Acta Phys. Sin., 2012, 61(2): 026803.
[7]
Wang Xin-Liang, Di Qin-Feng, Zhang Ren-Liang, Gu Chun-Yuan, Ding Wei-Peng, Gong Wei. Dual drag reduction mechanism of water-based dispersion with hydrophobic nanoparticles in core microchannel and experimental verification [J]. Acta Phys. Sin., 2012, 61(14): 0146801.
[8]
Chu Li-Zhi, Deng Ze-Chao, Ding Xue-Cheng, Zhao Hong-Dong, Wang Ying-Long, Fu Guang-Sheng. Influence of the ambient pressure of Ar on the range of nucleation area of Si nanoparticles [J]. Acta Phys. Sin., 2012, 61(10): 108102.
[9]
Zhao Hua-Bo, Wang Liang, Zhang Zhao-Hui. Effect of palladium adsorption on the electrical transport of semiconducting carbon nanotubes [J]. Acta Phys. Sin., 2011, 60(8): 087302.
[10]
Zang Du-Yang, Zhang Yong-Jian, Langevin Dominique. Rheological study of silica nanoparticle monolayers via two orthogonal Wilhelmy plates [J]. Acta Phys. Sin., 2011, 60(7): 076801.
[11]
Chen Hui-Min, Liu En-Long. Theoretical calculation of molar heat capacity at constant pressureof nanoparticle and nanocrystalline [J]. Acta Phys. Sin., 2011, 60(6): 066501.
[12]
Deng Ya, Zhao Guo-Ping, Bo Niao. The analytical investigation of the magnetic orientation and hysteresis loop in exchange-spring magnetic multilayers [J]. Acta Phys. Sin., 2011, 60(3): 037502.
[13]
Wang Kai, Long Hua, Fu Ming, Zhang Li-Chao, Yang Guang, Lu Pei-Xiang. The two-photon absorption saturation process in an Au nanoparticle array [J]. Acta Phys. Sin., 2011, 60(3): 034209.
[14]
Han Tao, Meng Fan-Ying, Zhang Song, Wang Jian-Qiang, Cheng Xue-Mei. Theoretical investigation of anti-reflection properties of Ag-nanoparticles [J]. Acta Phys. Sin., 2011, 60(2): 027303.
[15]
Deng Ze-Chao, Luo Qing-Shan, Ding Xue-Cheng, Chu Li-Zhi, Liang Wei-Hua, Chen Jin-Zhong, Fu Guang-Sheng, Wang Ying-Long. Pressure threshold and dynamics of nucleation for Si nano-crystal grains prepared by pulsed laser ablation [J]. Acta Phys. Sin., 2011, 60(12): 126801.